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Abstract The information and data security communities and their individual practitioners have 
long experienced the pedagogical difficulties in communicating to management or funding 
bodies the importance and relevance of sufficient investments in information and data security. 
Inside these communities there is almost universal agreement that companies under invest in 
security. 
 
One reason for this pedagogical failure is that the highly specialized security domain is difficult to 
penetrate for the average manager with a background in business administration or economics. 
Consequently, the entities and metrics used by the security community to evaluate security risks 
and their consequences usually tell very little to people involved in security investment decisions. 
 
Historically, Return on Investment RoI has been used for this purpose. However, RoI is not an 
ideal entity to use, since it generates misunderstanding and misinterpretation. Companies and 
enterprises already have tools, methods and metrics to express risk levels and their economic 
consequences to support management in investment decision situations: we refer to Value-at-
Risk and Value-at-Risk-type metrics. 
 
This contribution transforms or transfers entities and metrics used by the information and data 
security communities into Value at Risk-type entities and metrics. This will allow management to 
understand, compare and evaluate security risks and their economic consequences with risks 
generated by other sources, strategies or investment decisions and give management a firmer 
and more rational basis for security investment decisions. 

 
 
 
1 Introduction and Problem Situation 
 
There are several models aiming at answering the questions on how much to spend on security 
investments, and on the incentives to do so [1] – [3]. Usually the models aim at establishing a 
quantitative relation between investment level and the resulting vulnerability level.  
 
The information and data security communities and their individual practitioners have long 
experienced the pedagogical difficulties in communicating to management or funding bodies the 
importance and relevance of sufficient investments in information and data security and inside these 
communities there is almost universal agreement that companies under invest in security. However, 
some rational economical support for such a strategy can be raised [3].  
 
One reason for this pedagogical failure is that the highly specialized security domain is difficult to 
penetrate for the average manager with a background in business administration or economics. 
Consequently, the entities and metrics used by the information and data security communities to 
evaluate security risks and their consequences usually tell very little to people involved in security 
investment decisions. 
 
Historically, Return on Investment RoI (sometimes named Return on Security Investment RoSI in our 
application) [1] has been used for this purpose. However, RoI is not an ideal entity to use, since it 
generates misunderstanding and misinterpretation: RoSI as applied is not a financial return on an 
investment that we can collect and register in accounting books [4], [5] but an expected net prevented 
loss due to security breaches per monetary unit invested. 
 
Companies and enterprises already have tools, methods and metrics to express risk levels and their 
economic consequences to support management in investment decision situations: we refer to Value-



at-Risk (VaR) [6], [7] and Value-at-Risk-type metrics. We have already seen several such VaR-type 
metrics, e.g. Credit-, Cash Flow-, Revenue-, Profit-, and Market Value at Risk. 
 
The purpose of this contribution is to add ‘Value-at-Security Risk’ (VaSR) to this collection by 
transforming or transferring the entities and metrics (such as Threat, Vulnerability, Security Risk, 
Breach Loss) already used by the information and data security communities into Value at Risk-type 
entities and metrics. This will allow management to understand, compare and evaluate security risks 
and their economic consequences with risks generated by other sources, strategies or investment 
decisions: companies may have corporate guidelines on allowed financial risk levels as a function of 
investment levels [14]. Credit rating agencies, such as Moody’s [15] and Standard & Poor’s [16], have 
very well defined demands on financial risk level, investment level, time span and equity capital for a 
company to qualify for a particular rating level. 
 
Thus, our aim is to give to management a metric that will constitute a firmer and more rational basis for 
security investment decisions. 
 
We reach the purpose in the following steps: 
 
Section 2 introduces and lists entities to be used, and section 3 formulates our problem and defines 
the concept of Value-at-Risk.  Section 4 gives a high-level analytic introduction to our model, whereas 
section 5 goes into analytic details and derives the key entity that solves our problem. Section 6 uses 
this entity to define and calculate the most important Value-at-Risk entities. Section 7, finally, gives 
some comments and conclusions. 
 
Thus, this contribution establishes a connection between the length of an investment period, risk level 
and value at risk. An earlier contribution [3] established the connection between length of investment 
period, investment level, risk level and value to be security protected. 
 
 
2 Background and Preliminaries 
 
We import from [2] and [3] the following mean value (or Expected Value in the sense of statistical 
theory) entities, namely 
 

• Threat T(t) is the number of (security) attacks per unit time at time t, 

• Vulnerability V(t) is the probability that an attack at time t will be successful, 

• Breach Loss λ(t) is the economic loss we make from a successful attack at time t, 

• Potential Loss per Unit Time at time t is T(t)λ(t); taken over an investment period (tj; tj+1) the 

Potential Loss is PL(tj; tj+1) = ∫
+  1tj

tj

T(τ)λ(τ) dτ. 

• Security Risk per Unit Time at time t is T(t)V(t); this is equal to the number of successful 

attacks per unit time at time t. 

Taken over an investment period (tj; tj+1) the Security Risk is SR(tj; tj+1) = ∫
+  1tj

tj

V(zj; τ)T(τ) dτ . 

zj is the investment in monetary units that we make at investment time tj for the period (tj; tj+1). 

The resulting vulnerability is V(zj;t); it will increase during the course of time [3]. 

 

To reach our present purpose, we need to introduce the following stochastic variables: 
 

• A is the number of (security) attacks per unit time at time t; discrete (and integer) A has power 
density function (pdf) pA(n;t) = Pr{A = n; t}, i.e. the probability that A equals n at time t. 



 
We want the expected value of A to be E{A} = T(t) since we want to transform or transfer 
Threat T(t) used by the security community into entities used by the financial risk community. 
 

• S is the number of successful (security) attacks per unit time at time t; discrete (and integer) S 
has pdf pS(m;t) = Pr{S = m; t}, i.e. the probability that S equals m at time t. We will later 
present a candidate model for authentic data for pS(m;t). 

 
With the expected value of S as E{S}, we observe that Vulnerability V(t) = E{S}/E{A} and that 
E{S} = T(t)V(t), i.e. Security Risk per Unit Time at time t. 

 
• L is the economic loss we make from a successful attack at time t. Continuous L has pdf 

fL(ℓ;t), i.e. the probability that L falls in an interval (ℓ ;ℓ+dℓ) at time t is equal to fL(ℓ;t)dℓ. We will 
later present a candidate model for authentic data for fL(ℓ;t). 

 
We want the expected value of L to be E{L} = λ(t), i.e. Breach Loss at time t in the terminology 
of the security community. 

 
 
3 Problem Formulations; Value-at-Risk 
 
The core question answered by stating the Value-at-Risk is the following: In a situation beyond our 
own immediate control and where value is at risk, what is the maximum loss value that, with a preset 
level of confidence, will not be surpassed within a defined time span?  
 
This value is the Value-at-Risk. Within Credit Risk Management, typical values can be 5 M$, 95 %, 24 
hours. Depending on the application, these numbers can be quite different. We refer to [6] for an 
introduction to the subject. 
 
In principle, there are two methods to arrive at the Value-at-Risk, a non-parametric- and a parametric 
method. The non-parametric method relies on historic data in the sense that we, from such data for 
the application under consideration, generate a histogram for loss within the defined time span. From 
this histogram we estimate VaR (and other entities of interest) at the preset confidence level. Provided 
we have sufficient historic data, this method is simple and quite straight forward. However, it does not 
generate as much insight into the underlying mechanisms to our risk situation as does the parametric 
method, which, on the other hand, critically depends on an accurate risk situation model and historic 
data to normalize our model parameters. The method also relies on the possibility to estimate the 
value of the resource that we want to protect, which can be very different, e.g. corporate IT 
infrastructure, competitive information and knowledge such as customer or product data, and brand 
value. We return to this issue in section 7 Comments and Conclusions; Present and Future Work. 
 
The parametric method derives a pdf for the loss within a defined time span. From this pdf we 
calculate VaR and other entities of interest. We will follow the parametric method line and state our 
own problem situation as follows: 
 
Find the pdf for the total loss L, i.e. the value that, due to security breach attacks, is at risk during an 
investment period. 
 
This pdf will use entities already in use by the security community to calculate Value-at-Security Risk, 
Expected Breach Loss, Unexpected Breach Loss, and Expected Tail Breach Loss; this is done in 
section 6 Value-at-Security Risk Entities. 
 
 
4 Value-at-Security Risk Model; Assumptions 
 
Using the stochastic variables S and L introduced above and initially following, but generalizing and 
adapting to our present application, the approach in [6], chapter 19.3, we experience the individual 
losses L1, L2, L3,… during a time unit at time t, so that the total loss per time unit at time t is   



Lm = ∑
=

m

i 1

Li .  

 
The generalisation we make is to introduce time dependent λ(t) and ν(t); this is relevant since we 
know that Threat, Vulnerability and Breach Loss all vary with time [8]. 
 
Further, the probability that the total loss L(t) per time unit at time t is smaller than or equal to some 
value x is 

 Pr{L(t) ≤ x } = ∑
∞

=0m

Pr{Lm ≤ x | m} x pS(m;t) = 

  = ∑
∞

=0m

Pr{(∑
=

m

i 1

Li) ≤ x | m} x pS(m;t).  (1) 

 
Here we have made the assumptions that the individual attacks, as well as their consequent breach 
losses, are independent. We are aware that this is not always the case and will comment on these 
assumptions in section 7 Comments and Conclusions; Present and Future Work. 
 
From this expression we may in principle obtain the pdf g(x) for the total loss L over the investment 
period (tj; tj+1) as  
 

 g(x) = ∫
+  1tj

tj

[dPr{L(t) ≤ x}/dx] dt    (2) 

 
From g(x) we may determine VaSR on the confidence level at our specification, and any additional 
statistical entity that we prefer under the conditions at hand, i.e. known, assumed or estimated 
behaviours of Threat T(t), Vulnerability V(t), and Breach Loss λ(t).  
 
We will next introduce and make concrete assumptions on these entities and develop g(x) into an 
operationally useful form. 
 
 
5 Our Parametric Model 
 
We make the assumption that the number of successful attacks per time unit at time t (i.e. the 
stochastic variable S) is Poisson-distributed; this is a well tested model of the number of arrival events 
[9]. Thus, we have 
 
 pS(m;t) = (ν(t)m/m!) x exp( -ν(t)) ;  m integer ≥ 0 and ν> 0.  (3A) 
 

pS(m;t) = 0 ;  m integer ≥ 0 and ν= 0.   (3B) 
 
Here the event intensity ν(t) = E{S} = T(t)V(t), i.e. Security Risk per Unit Time at time t.  
 
[6] uses a time-independent geometric distribution for the number of events per time unit, which we 
think is less in agreement with the actual behaviour in our application. 
 
We next make the assumption that the economic loss L that we make from a successful attack at time 
t is exponential distributed with the expected value E{L} = λ(t), i.e. Breach Loss at time t. Thus, 
 
                = (1/λ(t)) x exp( - ℓ/λ(t));  ℓ ≥ 0 and λ(t) > 0, 
 fL(ℓ; t) =     (4)  
                = 0  elsewhere 
 
[6] uses the same distribution but with time-independent parameter λ.  



 

To proceed we need the pdf of Lm = ∑
=

m

i 1

Li , where all Li have pdf Equ (4). It is well known [9] that the 

pdf for a sum of m independent expo(λ(t))-distributed stochastic variables is gamma-distributed 
Γ(m;λ(t)), i.e. Lm has pdf 
 
 fLm(ℓ; t) = {ℓm-1/[λ(t)m Γ(m)]} x exp[ - ℓ/λ(t)] .   (5) 
 
Γ(m) is the Gamma function; Γ(m) = (m-1)! , m integer ≥ 1. 
 
We now have  

 Pr{(∑
∞

=0m

Li) ≤ x | m} = ∫
x

0

 {ℓm-1/[λ(t)m Γ(m)]} x exp[ - ℓ/λ(t)] dℓ + Pr{(∑
∞

=0m

Li) ≤ x | m=0} 

 
and, using Equ (3), rewrite Equ (1) to read 
 

 Pr{L(t) ≤ x } = ∑
∞

=1m

{∫
x

0

{ℓm-1/[λ(t)m Γ(m)]} x exp[ -ℓ/λ(t)] dℓ (ν(t)m/m!) x exp[ -ν(t)] } + 

+ exp( -ν(t)) = 
 

 = { ∫
x

0

 exp( -ν(t))  x exp[ - ℓ/λ(t)] dℓ} x {∑
∞

=1m

{ℓm-1/[λ(t)m Γ(m)]} [ν(t)m/m!)]} + 

  + exp( -ν(t)) , x ≥ 0 and ν> 0.   (6A) 
 
 Pr{L(t) ≤ x } = 0 for x < 0 and for all x when ν= 0.  (6B) 
 
The last term in Equ (6A) is important; it absorbs the case m= 0 which is not covered by the pdf of Lm , 
Γ(m;λ(t)), but contributes to L(t) ≤ x. We will comment on it in section 5.2 A Special Case: Constant λλλλ 
and νννν. 
 
Using the modified Bessel function of the first kind [10], and the fact that Γ(ν + k + 1) = (ν + k)! for 
integer ν, 

 Iν(z) = ∑
∞

=0k

(z/2)ν+2k /[ k! (ν + k)! ] 

 
we obtain 

 Pr{L(t) ≤ x } = ( ) ( )tt λν / exp( -ν(t)) ∫
x

0

I1( ( ) ( )tt λν /2 l ) exp[ -ℓ/λ(t)] / l  dℓ + 

+ H(ν) exp( -ν(t)), 
 
i.e. the pdf of L(t) is  
 
 fL(x;t) = Pr{L(t) ≤ x}/dx =  
 

          = C ( ) ( )tt λν / exp( -ν(t)) I1( ( ) ( )ttx λν /2 ) exp[ -x/λ(t)] / x  + 
 

 + C δx,0 H(ν) exp( -ν(t)) .     (7) 
 



δx,0 is the Kronecker delta and H(ν) is the Heaviside step function. Expressed as in Equ (7), this fL(x;t) 

is valid for all x ≥ 0 and for all values of ν ≥ 0. 
 
C is a probability-normalization constant; using entry 11.4.31 of [10], 
 

 ∫
∞

0

exp( - a2t2) Iµ(bt) dt = ( π /2a) exp( b2/8a2) Iµ/2( b
2/8a2)  

 
when R (µ) > -1 and R (a2) > 0, which is true in our case, and 
 

 I1/2(z) =  πz/2  sinh(z), 
 
we confirm that C = 1 and arrive at the pdf for the total loss L(t) per time unit at time t  
 

 fL(x;t) = ( ) ( )tt λν / exp[ -ν(t)] x I1( ( ) ( )ttx λν /2 ) exp[-x/λ(t)]/ x  + 

   
+ δx,0 H(ν) exp( -ν(t))   (8) 

 
With no loss of generality, taking the investment period to be (0;T), we now find the pdf gL(x) for the 
total loss L over the investment period to be 
 

 gL(x) = ∫
T

0

fL(x;t) dt    (9) 

 
This is as far as we reach with analytic techniques without making functional assumptions about λ(t) 
and ν(t). 
 
5.1 Some Observations on fL(x;t) and gL(x) 

Using the approximation Iµ(z) ≈ (z/2)µ/ Γ(µ+1), valid for 0 < z < 1+µ , we have for x< λ/2ν 

 
 fL(x;t) = [ν(t)/λ(t) exp[-x/λ(t)] + δx,0 H(ν)] exp[ -ν(t)]  
so that 
 fL(0;t) = [ν(t)/λ(t) + H(ν)] exp[ -ν(t)] . 
 
Moreover, fL(x;t) →0 when x→∞. 
 
Further, for x > 0 and using Iµ−1(z) = dIµ(z)/dz +[ν(t)/z(t)] Iµ(z), we learn that fL(x;t) exhibits a maximum 
at x = xmax satisfying  
 
 I2(z) / I1(z) = z/2ν(t),     (10) 
 

where z = ( ) ( )ttx λν /2 ; since I2(z)/I1(z) < 1 for all z, it is always true that xmax < ν(t)λ(t) . This is 

expected. 
As a consequence, gL(x) is everywhere finite for finite investment interval (0;T). 
 
 
 
5.2 A Special Case: Constant λλλλ and νννν 
When λ and ν are both constant (i.e. independent of time) and at least when [2ν(t)/z] I2(z) - I1(z) > 0 
over the entire investment period, gL(x) also has a maximum at x = xmax above. Figure 1 shows such a 

case for λ= 0.5 and ν= 3.0. In this case Equ (10) gives xmax = 0.634. This may give us some guidance 



in investment decisions: 0 < xmax < ν(t)λ(t) tells us that medium sized breach losses are more frequent 
than low- and high-cost breaches. 
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Figure 1. Power Density Function gL(x) for total Breach Loss 
L over an investment period T= 1 year with constant λ and ν. 

 
 
We further study the special case when λ and ν are both constant since this gives us an opportunity to 
check the model in a few details: 
 

Using Eqs (8) and (9) and the fact that ∫
∞

∞−

f(x)δx,0 dx = f(0), we obtain the Expected Breach Loss over 

the investment period (0;T) 

 E{L} = ∫
∞

0

x gL(x) dx = T∫
∞

0

x fL(x) dx = T λν/  exp( -ν) ∫
∞

0

x1/2 I1( λν /2 x )exp(-x/λ) dx = 

 
          = { entry 11.4.29 of [10] } = Tλν. 
 
This is exactly what we expect: on an average ν successful attacks per time unit, each causing the 
average breach loss λ, will give this loss over the investment period. 
 
We also calculate the Breach Loss Variance over the investment period, 

 V{L} = E{(L – E{L})2} = ∫
∞

0

(x - Tλν)2 gL(x) dx = { entry 11.4.28 of [10] } =  

         = Tλ2ν [2 + ν(1 − T)2]. 
 
This result is of the quality that we expect: on an average ν exponentially distributed stochastic 
variables per time unit generate a gamma distributed stochastic variable with expected mean λν (as 
above) and variance λ2ν [9]. A multiplicative factor is plausible from the fact that the number of 
exponentially distributed variables added to form the gamma distributed stochastic variable is also a 
stochastic variable, thus generating an additional variance beyond λ2ν; the V{L } expression above is 
confirmed by simulation. 
 
Had we not included the isolated exp( -ν(t)) –term in Equ (6), and thereby nor the δx,0 exp( -ν(t)) –term 
in Equ (8), we would instead obtain  
 
 E{L} = Tλν/(1- exp( -ν)), 
 
i.e. E{L} = Tλν only asymptotically when ν →∞ and E{L } = Tλ asymptotically when ν →0, which is 
impossible for an obvious reason: also without successful attacks would we suffer a breach loss Tλ.  
 



Similarly, V{L} →Tλ2ν2 →∞ when ν →∞ and V{L } = T2λ2 asymptotically when ν →0, which again is 
impossible for the same reason. 
 
We want both V{L} and E{L} to be as small as possible but since both these entities increase 
monotonically in all variables contained, we instead study V{L}E{L} as a candidate metric for 
optimisation. More precisely do we want to know if there is an optimal length of the investment period 
(0;T) and we find that V{L}E{L} exhibits a minimum for 
 
 T = Topt = ¾ + ν/116/1 − , ν ≥ 16. 
 
However, this investment period length is far below any practical interest: for ν = 16 successful attacks 
per time unit would we have to invest at intervals 0.75 time units, and for very high-frequency 
successful attacks at intervals 1 time unit to enjoy optimality.  
 
Likewise, Normalized Breach Loss Variance V{L}/E2{L} suffers from the same defect as V{L}E{L}, i.e. 
gives an optimal investment period length that is far below any practical interest. 
 
We have to find economic optimality elsewhere. 
 
 
6 Value-at-Security Risk Entities 
 
Using Eqs (8) and (9), we may derive all quantitative entities of economic and risk evaluation interest, 
using the entities used by the security community. We list the most important and most frequently 
used VaR-type entities here and give examples. 
 
Value-at-Security Risk. Writing the Value-at-Security Risk = Xvasr for short, this value is defined by the 
relation 

 ∫
Xvasr

0

 gL(x) dx = 1- RL, 

 
where RL is our preset risk level; 1 – RL = CL, i.e. our confidence level. The explicit interpretation is a 
standard one: our total loss over the investment period, due to security breaches, will not exceed the 
value Xvasr with probability CL. 
 
Figure 2 shows an example with synthetic curves λ(t) and ν(t) and the resulting gL(x). 
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Figure 2. Power Density Function gL(x) for total Breach Loss L over an investment period. 
 

 
Expected Breach Loss (EBL) is 

 EBL = E{L } = ∫
∞

0

x gL(x) dx , 

 
and Unexpected Breach Loss (UeBL) is VaSR – EBL [6]. 
 
Expected Tail Breach Loss (ETBL) is the expected loss in case the loss exceeds VaSR, i.e. 

 ETBL = E{L |L > Xvasr } = ∫
∞

Xvasr

x gL(x) dx / ∫
∞

Xvasr

gL(x) dx 

 
Security Risk over the investment period (0;T) is  

 SR(0;T) = ∫
T

0

ν(t) [∑
∞

=0m

pS(m;t)] dt = { Equ (3) } = ∫
T

0

ν(t) dt . 

 
This expression agrees with the equivalent expression in use by the security community. 
 
To calculate the values of these entities, we have to resort to computer simulations. 
 
 
7 Comments and Conclusions; Present and Future Work 
 
An assumption made was that the individual attacks as well as their consequent costs are 
independent; this is not always true since some attacks come in bursts. A typical example is 
successful virus attacks, where many computers and servers become infected by the same virus. 
Thus, bursts are usually independent but attacks within a burst are correlated. 



 
The present approach can harbour this situation by modelling breach loss λ(t) and attack intensity ν(t) 
to have coinciding periods with varying combinations of breach loss level and attack intensity level, 
e.g. frequent low breach loss attacks or rare high breach loss attacks. Figure 3 shows such a situation 
with synthetic data. 
 
We are presently modifying the model and the simulation implementation to include a situation with 
varying and stochastic burst time lengths. We are further collecting and analyzing our historic 
authentic data with the intention of using it as input to our simulations. 
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Figure 3.  Power Density Function gL(x) for Total Breach Loss L over an investment 

period with Average Breach Loss <λ> = 0.5 and Average Successful Attack Intensity 
<ν> = 3; <λ><ν> = 1.5 and <λ ν> = 1.345 and EBL = E{L } = 1.811. 

Compare with Figure 1, where λ = 0.5 and ν = 3. 
 

 
Another critical assumption is that we can estimate the values of the resources to be protected so that 
we have a fair estimate of breach loss λ(t). Admittedly this is a hard and uncertain activity [11], [12] 



and several practitioners within the information and data security communities have strong reservation 
against the principal possibility of doing so. [13] is one of them. Despite his explicit rejecting position, 
the author repeatedly gives good examples of metrics that can be useful for such endeavours. 
Moreover, individual managers or resource responsible people do make such estimates for specific 
applications or situations, e.g. by estimating costs caused by virus attacks. These costs include 
manpower costs for clean-up operations and stand-still time, license costs and sometimes loss of 
brand value. The estimates may not cover all costs or losses, but they can serve as a floor in security 
investment decisions.   
 
We make the observation that the model presented does not use the individual entities Threat T(t) and 
Vulnerability V(t), but their product. As far as Threat and Vulnerability are known individually we may 
gain additional insight into our security situation, but the present model does not need them such, at 
least if we do not want to calculate the equivalent of Potential Loss; then we will need the pdf of a 
stochastic variable Threat T(t) that measures the number of attack attempts per time unit at time t. 
Potential Loss is substituted by VaSR, EBL, UeBL and ETBL (and others) as defined here, which are 
much more informative than Potential Loss. With them, we can address management in a terminology 
that management is familiar with. 
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