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Abstract

The correct control of security often depends on decisions under uncertainty.
Using quantified information about risk, one may hope to achieve more precise
control by making better decisions. We discuss and examine how Prospect Theory,
the major descriptive theory of risky decisions, predicts such decisions will go
wrong and if such problems may be corrected.

1 Can security decisions go wrong?
Security is both a normative and descriptive problem. We would like to normatively
follow how to make correct decisions about security, but also descriptively understand
where security decisions may go wrong. According to Schneier [1], security risk is
both a subjective feeling and an objective reality, and sometimes those two views are
different so that we fail acting correctly. Assuming that people act on perceived rather
than actual risks, we will sometimes do things we should avoid, and sometimes fail to
act like we should. In security, people may both feel secure when they are not, and feel
insecure when they are actually secure [1]. With the recent attempts in security that aim
to quantifying security properties, also known as security metrics, we are interested in
how to achieve correct metrics that can help a decision-maker control security. But
would successful quantification be the end of the story? The aim of this paper is to
explore the potential difference between correct and actual security decisions when
people are supposed to decide and act based on quantified information about risky
options. If there is a gap between correct and actual decisions, how can we begin to
model and characterize it? How large is it, and where can someone maybe exploit it?
What can be done to fix and close it? As a specific example, this paper considers the
impact of using risk as security metric for decision-making in security. The motivation
to use risk is two-fold. First, risk is a well-established concept that has been applied in
numerous ways to understand information security [2, 3, 4, 5, 6] and often assumed as a
good metric. Second, we believe that it is currently the only well-developed reasonable
candidate that aims to involve two necessary aspects when it comes to the control of
operational security: asset value and threat uncertainty. Good information security is
often seen as risk management [7], which will depend on methods to assess those risks
correctly. However, this work examines potential threats and shortcomings concerning
the usability of correctly quantified risk for security decisions.

Our basic conceptual model to understand decision-making for security is as fol-
lows, similar to [8]: in this paper, we consider a system that a decision-maker needs
to protect in an environment with uncertain threats. Furthermore, we also assume that
the decision-maker wants to maximize some kind of security utility (the utility of secu-
rity controls available) when making decisions regarding to different security controls.
These different parts of the model vary greatly between different scenarios and little
can be done to model detailed security decisions in general. Still, we think that this is
an appropriate framework to understand the need of security metrics. One way, maybe
often the standard way, to view security as a decision problem is that threats arise in the
system and environment, and that the decision-maker needs to take care of those threats
with available information, using some appropriate cost-benefit tradeoff. However, this
common view overlooks threats with faults that are made by the decision-maker. We
believe that many security failures should be seen in the light of limits (or potential
faults) of the decision-maker when she, with best intentions, attempts to achieve secu-
rity goals (maximizing security utility) by deciding between different security options.
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We loosely think of correct decisions as maximization of utility, in a way to be specified
later.

Information security is increasingly seen as not only fulfillment of Confidentiality,
Integrity and Availability, but as protecting against a number of threats having by do-
ing correct economic tradeoffs. A growing research into the economics of information
security [9, 10] during the last decade aims to understand security problems in terms
of economic factors and incentives among agents making decisions about security, typ-
ically assumed to aim at maximizing their utility. Such analysis is made by treating
economic factors as equally important in explaining security problems as properties
inherent in the systems that are to be protected. It is thus natural to view the control of
security as a sequence of decisions that have to be made as new information appears
about an uncertain threat environment.

Seen in the light of this, and that obtaining security information usually in itself
is costy, we think that any usage of security metrics must be related to allowing more
rational decisions with respect to security. It is in this way we consider security metrics
and decisions in the following.

The basic way to understand any decision-making situation is to consider which
kind of information the decision-maker will have available to form the basis of judge-
ment. For people, both the available information, but also potentially the way in which
it is framed (presented), may affect how well decisions will be made to ensure goals.
One of the common requirements on security metrics is that they should be able to to
guide decisions and actions [11, 12, 13] to reach security goals.

However, it is an open question how to make a security metric usable and ensuring
such usage will be correct (with respect to achieving goals) comes with challenges [14].
The idea to use quantified risk as a metric for decisions can be split up into two steps.
First, doing objective risk analysis using both assessment of system vulnerabilities and
available threats in order to measure security risk. Second, presenting these results in
a usable way so that the decision-maker can make correct and rational decisions.

While both of these steps present considerable challenges to using good security
metrics, we consider why decisions using quantified security risk as a metric may go
wrong in the second step. Lacking information about security properties of a system
clearly limits the security decisions, but we fear that introducing metrics do not neces-
sarily improve them, see e.g. [14]. This may be due to 1) that information is incorrect
or imprecise, or 2) that usage will be incorrect. This work takes the second view and
we argue that even with perfect risk assessment, it may not be obvious that security
decisions will always improve. We are thus seeking properties in risky decision prob-
lems that actually predicts the overall goal - maximizing utility - to be, or not to be,
fulfilled. More specifically, we need to find properties in quantifications that may put
decision-making at risk of going wrong

In our case, the way to understand where security decisions go wrong is by using
how people are predicted to act on perceived rather than actual risk. We thus need to
use both normative and descriptive models of decision-making under risk. For norma-
tive decisions, we use the well-established economic principle of maximizing expected
utility. But for the descriptive part, we note that decision faults on risky decisions not
only happen in various situations, but has remarkably been shown to happen systemat-
ically described by models from behavioral economics. In this paper we discuss and
examine how the outcome of these models differ and what this difference predicts. The
contribution of this paper is summarized as follows

• First, a discussion of rationality and bounded rationality and how these concepts

2



are important for security decisions, especially when presenting quantitative se-
curity risk metrics for people.

• Then, we apply the main descriptive theory of human decisions on risk (Prospect
Theory), to see where security decisions are predicted to go wrong using explicit
risk as security metric.

• Finally, we investigate the sensitivity of this effect, using numerical studies re-
garding to correct such problems depending on their sensitivity.

2 Background
Even if one does have a normative model for how risky decisions should be made, this
says little how such decisions are made in practice. A key challenge in security is to
make actual decisions follow the normative standard involving various goals, and it can
even be argued that this is a basic reason to do security evaluation.

To study how something may go wrong requires assuming a model of correctness.
For risky decisions, we use the standard concept of rationality based on the Expected
Utility (EU) principle, initially introduced by Bernoulli [15] and later axiomatized by
von Neumann and Morgenstern [16]. The principle is normative in that it prescribes
how risky decisions should be made for indepdendent decisions, given that we can
compute the risk1 of different options. EU however fails to be descriptive in many
ways when it comes to people making decisions in experimental settings.

Deviations from normative risk rules not only happen in various situations, but also
to some degree systematically as shown by research in behavioral economics. One
of the most prominent models of how peoples risk judgement deviates from EU is
Prospect Theory (PT) or its successor Cumulative Prospect Theory, both introduced
by Kahneman and Tversky [17, 18], which we will apply to attempt modelling risky
security decisions.

We want to specifically model where risk is used as a security metric to study
where decisions are predicted to go wrong. In the following, a security decision-maker
is faced with a decision by being presented with a number of security prospects, where
each prospect has a number (one or more) of known-valued outcomes with a probability
for each. In the rest of this paper the problem is that one of these prospect has to be
chosen over the others. From now on, rationality will be considered for such decisions.

2.1 Rationality
Intuitively a decision picking one from a number of prospects is rational when it gives
the best outcome (maximizing utility) for the decision-maker given surrounding con-
straints. However, most important decisions come not only with a set of fixed outcomes
once a decision for an option has been made, but also with uncertainty about outcomes.
For such decisions rationality usually means to pick the option which is best in expeca-
tion. While the expected utility principle has a long history, the modern dominating
view of rationality usually relates to Morgernstern and von Neumann who axiomatized
the Expected utility theory[16]. This showed that if a decision-maker follows a num-
ber of simple axioms and has well-known preferences it is shown that there must exist
a utility function that assigns to each prospect a number to numerically order options

1Probabilities of known losses
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in such a way that they are ordered in preference. While this lead to a large study
and usage of utility functions, this also raised a number of questions to which humans
actually act in such a manner. Not surprisingly, this is not always so.

2.2 Bounded Rationality and Prospect Theory

People seem able to quickly make decisions in complex and uncertain environments
and often do so quickly without doing complex and deliberate information processing[19][20].
This may be beneficial in with respect to long-term adaption as well as to individual
learning with respect to specific environments and is often seen as a combination of
both. Ignoring the explanation for such effects, we may also expect to see such simpli-
fying strategies of making decisions to be present in people when it comes to security
decisions. These strategies have been largely and systematically studied during the last
decades.

The study of how behavior systematically deviates from rationality, in economical
and other situations, is the study of Bounded rationality that began in the 1950ies [21].
The main finding in bounded rationality has been that human decision-makers often
use a set of heuristics [20] for their decision-making rather than being fully rational in
evaluating what optimal in decisions with regard to the outcomes. These heuristics that
can be seen as decision-making shortcuts are believed to rationally reduce the burden
on a decision-maker with respect to limited time and resources2, since they allow more
decisions to be made with smaller burden. When said heuristics are used in decisions
where they fail they are said to give rise to bias. It in such biases that have been largely
studied by psychology and economics during the last decades, in the field Behavioral
economics.

Probably the most well-developed descriptive theory of human decisions using
quantified risk is Prospect Theory [17] (PT) (1979) and its successor Cumulative Prospect
Theory [18] (1991). PT attempts to describe how people make decisions with quan-
tified risk by modeling decision heuristics directly into the descriptive theory. Three
key concepts in PT reflect potential decision bias which differs from normative rational
theory. First, decision-makers are reference-dependent, meaning that risky prospects
are evaluated relative to a reference point rather than to final outcomes. The effect of
this subjective viewpoint is known as framing, with the reference of the decision-maker
affecting how a prospect is qualitatively judged as either a loss or a gain. Second, deci-
sions are loss-aversive, meaning that losses are perceived relatively stronger than gains,
based on empirical results showing that losses are disproportionally harder to consider
when weighted together with gains. Third, probabilities are weighted non-linearly:
small probabilities are overweighted while moderate or large probabilities are often un-
derweighted relative to their objective values. The second and third properties attempt
to provide explanations understand many non-intuitive effects regarding risk-seeking,
risk-aversion and behavior deviating from the purely rational agent. These properties
are explicitly modelled using value and weight (Figures 1,2) functions parametrized to
fit empirical results of risky decision-making. A full presentation of PT is outside the
context of this paper, we refer the reader to either the Appendix or [22, 23] for good
survey and introduction.

2Rather than rationality strictly in outcomes
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2.3 Risk as a Security Metric
What is commonly known as security metrics still seems to be in a state of ideas about
best-practice rather than scientific examination [24] of whether it is rational to use and
adopt such metrics. The current state of the field raises the question whether it is really
enough with just proposing metrics rather than basing such suggestions on empirical
or theoretical validation.

However, the alternative for control of operational security with many decisions
under uncertainty is to let experts pick between options using inherently subjective de-
cision criteria [25]. While domain-specific expertise seems the standard way to manage
security, this typically does not provide any quantitative methods and measures to un-
derstand, control and improve [24] the security risks inherent in different security de-
cisions. One idea behind security metrics is to bridge the gap between domain-specific
expert judgement and an application of precise quantitative methods. The goal is to
allow precise quantitative evaluation to help guiding the actions of a decision-maker
[12], potentially making decisions better.

In general there are many ideas but no strong consensus on what security metrics
should be and which properties they need to fulfill their goals. We do not attempt to
survey these ideas here. But if security is understood as above, any rational usage of
security metrics requires either explicit modelling of gains and losses, or support by
empirical work showing the efficiency of letting metrics affect security decisions. This
naturally gives two requirements for security in an economic setting: security metrics
need to i) provide precise quantified indicators of future security performance, and ii)
be rationally usable with respect to the decision-maker. Now consider two things that
may complicate these requirements.

First, deveeloping metrics by measurement of a system in an environment one faces
at least two different issues involving uncertainty: i) uncertainty in measurement3 re-
garding how well one directly or indirectly observes security events that succeed and
fail with respect to goals, and ii) uncertainty in an environment for how well results
can be said to generalize beyond what has been measured in a particular case. With
limited information about the future of a system, these uncertainties need to be taken
into account. These are major challenges to developing stable metrics for operational
situations.

Second, even precise and quantified metrics themselves generally do not come
without threats or problems when they are supposed to support decisions (see [14]
for a discussion about metrics guiding actions) in a rational way. It has turned out to be
a considerable challenge to develop metrics in practice for real-world problems as there
are no good established solutions on the horizon. Such metrics are still considered in a
stage of lacking both theoretical and empirical evaluation [26] of their efficiency. Our
problem in this paper is not how to achieve metrics in the widest sense, but to what
extent metrics can be used rationally in decision-making. We do not want metrics to
provide only perceived confidence but are concerned how they will provide measurable
efficiency.

Thus, we see that security metrics needs methods to take uncertainty into account.
The only concept that we have found fulfilling these requirements in the literature is to
use risk in various ways as a security metric. Formally, the risk of an uncertain event
means knowing both its probability and the impact of its outcome. Seen in this way,
security metrics requires one to model security events and risks in systems involving

3For a concrete example: the amount of correct detection by virus/malware detection programs, an IDS,
or the confidence one should have in provided expert judgement.
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all four parts the basic conceptual model (decision-maker, system, environment and se-
curity utility), or to develop security metrics for a decision-maker to perform additional
evaluation. We believe that modelling risk in situations with interactions between these
is the main challenge to develop good security metrics.

There has actually been no lack of attempts to model risk in complex socio-technical
systems, where Probabilistic Risk Assessment [8], decision analysis [27, 28] and de-
pendability [29] are some models that may be used to propose risk metrics. However,
little that work has not been directly aimed at security. Some work also ends up in-
volving ways of integrating expert judgement [30, 31], while also relating to potential
problems [32, 25] when people are using quantitative methods. One underlying as-
sumption is often that correct modelling will improve systems. Even if such modelling
itself is clearly very challenging, in this paper we will assume that a decision-maker is
provided the result of security risk modelling.

2.4 Related Work
Concepts from Behavioral economics and Prospect theory have been discussed in sev-
eral places in the security and privacy literature such as [25, 33, 34, 35, 1]. In general,
limitations of expert judgement combined with quantitative methods have also been
studied in many cases, see [32] for a good introduction on how expert judgement may
fail. The work by Schroeder [35] contains experimental work, based on Prospect the-
ory, involving military personel that attempts to repeat several empirical studies made
by Kahneman/Tversky by using question-based methods. The author uses questions
where the basic structure from previous experimental questions remains - but adapted
(on the surface) to a security context. The study claims there is support for bias but that
further investigation is needed. Furthermore, some decisions either contain trading off
security and operational gains/losses without specifying the measure of security any
further, treating security as a goal in itself. Besides not being empirical, two things
set the current work apart from [35]. First, this work assumes it is possible to model
and estimate costs from security and operational measure into single prospects similar
to a monetary sense. Second, we do not yet know of any work that explores bias and
reframing systematically around risk that is given as input to security decision-making.
This could be used for further hypothesis to investigate Prospect Theory empirically in
our setting, complementing intersting initial results from [35].

Among others, the authors in [14] take the view that in order to use metrics well
one has to understand how metrics may fail, a view that we precisely examine in this
paper for risk as metric.

Using variants of risk as a metric to guide decisions has been proposed in many
ways using concepts from economics[2, 3, 5, 6] and Value at Risk-type measures [36]
have been proposed to manage security in a financial framework similar to operational
risk [4]. Furthermore, risk has been the basis of increasingly technical analysis of how
security investments should be done (such as the work started by [37]). Risk metrics
span the field between either pure economic risk management and analysis of technical
systems, depending on which kind of security system is under consideration. It can be
argued that these different methods can all be indirectly used for providing information
to risky decisions.

Working with models of perceived risk for non-expert users have been previously
discussed, such as in [3]. The authors discuss how risk communication may need to
be adapted to the non-expert rather than to experts in certain cases, using experiments
with wording, probabilities and various mental models. Further, they state the need to
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make mental risk models explicit rather than implicit. Similarly, the issue of assessing
system dependability also seems to have ended up examining user confidence [31].

While much work in behavioral economics discusses and reports of the framing
effect and human sensitivity [19, 38] to framing with different heuristics, to the best of
our knowledge this issue of bounded rationality and framing has not been studied to the
degree that it deserves for decision-making and risk assessment in security problems.
There seems to be room for applying these tools to understand bad security decisions
from new viewpoints, and how judgement may impact security failures.

2.5 Further motivation
Finally, one approach is to simply leave above concerns to decision-makers, where one
example is maybe best given by Paté-Cornell in [39], quoted as follows:

In all cases, a probabilistic analysis, of a risk or a decision, should not be per-
formed for people [...] who try to influence them to serve their own purposes, or who
have already made up their mind and simply seek justification. [...] If potential users -
and the people who are subjected to their decisions - prefer to rely on their insticts, so
be it.

Even though such problems are plausible, we take the view that biased usage of
information does not have to be left at that. Several arguments can be raised against the
view above. First, risk analysis is hardly the only thing that is being used for decision-
making in security, even if it is obtained in a correct manner. There may be benefits
in actually trying to proactively understand such problems. There may be issues in
presenting quantitative information for security decisions that should not be ignored if
known beforehand. To avoid acknowledging biased usage of risk analysis may lead
to security problems when leading to wrong decisions, like many other usability prob-
lems that often turn into security issues. If there is any way to systematically study
the phenomena this may also be used to understand the impact of the problem and to
suggest possible remedies. When important values are at stake it is not hard to argue
for reducing the possibility of wrong decisions.

Furthermore, these problems may obviously be exploited by malicious adversaries
who have an incentive to affect the outcome of security decisions. It is important
to understand how manipulation of risk perception may happen, which motivates us to
study the problem despite that few may be fully unbiased when making risky decisions.

3 Preliminaries
This section presents the modelling of two simple security decision problems. The
models consider when a boundedly rational decision-maker is faced with a decision
between two prospects a and b regarding to buy4 or skip buying protection against
security threats.

3.1 Assumptions
Now, the following assumptions are made to get a model suitable for analysis

4Here, accepting a prospect containing at least one fixed negative outcome.
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• Decision-makers behave as described by Kahneman and Tverskys Cumulative
Prospect Theory [18] (denoted as PT). This means that they make decisions based
on perceived risk and value as described above - so e.g. framing effects may
occur.

• Decision-makers have status quo as default value reference point, but that may
be modified by changing expectations.

• Decision-makers are presented quantified information that is assumed to pre-
cisely correspond to the risk in a security problem. We consider where each
prospect is presented with negative or positive outcomes and their probabilities.

• The unit for outcomes will be one unit to fit the value function in PT, and rational
behavior is defined to be linearly dependent on value in expectation (EU). That
is, we do not assume normative risk aversiveness, but rather a situation where
a decision-maker should normatively be risk-neutral when it comes to risk pref-
erences. This assumption is rather strong, but we feel it may hold when the
values at stake are independent and smaller than the base level (status quo of the
decision-maker). This is also relevant when one considers repeated but indepen-
dent decisions (like a large number of different lotteries over time for an entity
with relatively large resources).

• Decision-makers are assumed to act solely on the information presented to them
with regards to their reference point. We think that this assumption gets more
reasonable, combined with the above assumptions, the less the decision-maker
has expertise in security issues, such as non-experts with respect to security risks.

3.2 Utility and Prospects
A prospect is a decision option, on shorthand form as follows[18]: a prospect with
outcomes x1, x2, ..., xn with probabilities p1, p2, ..., pn is denoted in shorthand by

(x1, p1, x2, p2, ..., xn, pn)

If the outcomes x1, x2, ..., xn are exhaustive in that all potential outcome events
are listed here, then we require it to be a probability as

∑n
i=1 pi = 1. Otherwise,

by notation, there is an implicit default outcome (0, pn+1) with probability pn+1 =
1−∑n

i=1 pi.
From now decisions between two prospects are considered. Let a denote the

prospect of buying protection to get risk reduction either with certainty or to various
degree (examined separately later). Let b denote not buying buying protection only
facing certain risk - i.e. accepting a risky outcome instead of either a certain or risky
lower absolute loss.

Now, we ask how the normative and descriptive theories differ (no longer prescribe
and describe making the same decision) with respect to the actual structure and param-
eters in decisions. A quick recall of the theories before applying them:
Expected utility: given a prospect P = (x1, p1, x2, p2, ..., xn, pn) where

∑
pi = 1,

the utility (using the assumptions above) should be5

5According to the Expected Monetary Value principle [27], which we assume.
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Cumulative Prospect Theory: this descriptive theory [18] predicts that preferences
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where the value function v and weighting function w are used to evaluate prospects
(in terms of positive or negative outcomes, depending on the reference point) as

v(x) =
{

λ(x)β x > 0
−λ(−x)β x < 0

w−(p) =
pγ

(pγ + (1− p)γ)1/γ
, for negative outcomes

w+(p) =
pδ

(pδ + (1− p)δ)1/δ
for positive outcomes

where β, δ, γ, λ are parameters that have been estimated (from empirical data) to
0.88, 0.69, 0.61, 2.25 (by regression analysis on a population and picking median [18],
which is what we use at the moment even though this maybe could be improved). These
functions are displayed in Fig 1 and 2. Further brief details can be found in references
or in Appendix A.

Initially, we will keep to prospects with negative outcomes. We start with this
scenario as work on PT assumes that the status quo is the most natural frame (but we
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later examine what the theory predicts when the same prospects are framed differently).
That is, initially security decisions are assumed to be made between prospects with all
outcomes are perceived as losses (less than or equal to 0), in which case the form of PT
for a prospect P simplifies to

V (P ) =





w−(p)v(x)
for P = (x, p, 0, 1− p), x < 0

w−(p + q)v(x) + w−(q)(v(y)− v(x))
for P = (x, p, y, q, 0, 1− p− q),
y < x < 0

4 Applying Prospect Theory
So given quantified risk analysis - that is, of outcomes and their probabilities, can one
find an easy way to decide where such decision-makers are at risk of making wrong
decisions? Conversely, where should one want to look for decision failures in order to
increase security?

4.1 Failed decisions
Using the previous assumptions decision failures may be stated by constraints as the
following:

• Fail to buy: we should buy protection but Prospect Theory predicts we will not
when

EU(a) > EU(b)
V (a) < V (b)

• Fail to skip: we should not buy protection but PT predicts we will when
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EU(a) < EU(b)
V (a) > V (b)

4.2 Certain protection
In this situation we consider a decision between buying certain protection or facing a
fixed loss with a certain probability. To create some intution: finding yourself at risk
with the possibility to buy anti-virus protection: pay a sum x to get certain protection,
or take a risk of facing a much larger loss y with probability p. Formally, a decision-
maker has to choose between

• Prospect to buy: a = (x, 1)

• Prospect to skip: b = (y, p)

We have the two simple prospects a = (x, 1) and b = (y, r) with y < x < 0, and
want to examine where decisions may differ betwen the best and the actual decision.
First, examine where we should buy the protection

EU(a) > EU(b)
↔

x

y
< p

We are at risk of not doing so when

V (a) < V (b)
↔
...

↔
x

y
>

(
pδ

(pδ + (1− p)δ)
1
δ

) 1
β

We thus arrive at a relative interval x/y (for the prize and potential loss) where we
are at risk of failing to buy:

(
pδ

(pδ + (1− p)δ)
1
δ

) 1
β

<
x

y
< p

For the reverse conditions of when one should not buy, we are at risk of failing to
skip:

p <
x

y
<

(
pδ

(pδ + (1− p)δ)
1
δ

) 1
β

We will examine these predictions numerically further on in the paper, but first we
address where protection is not guaranteed to work - but in itself risky when exposed
to a threat.
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4.3 Risky protection
Now consider a more realistic situation: protection that is not absolute certain to work
but where we (by some method) have a certain confidence in it, information which
may be integrated into a risky prospect. This model contains both an uncertainty about
whether an attack will happen (a new threat will be realized) and also whether a system
will be robust enough to withstand the attack. Threats thus realize themselves in two
phases. Using probability, let p be the probability that an attack manifests, and r the
conditional probability that an attack succeeds, given protection. The prospects are
similar to before, besides that we now have an additional outcome for the prospect of
buying protection. Having y < x < 0 we have:

• Prospect to buy: a = (x + y, pr, x, 1− pr)

• Prospect to skip: b = (y, p)

Lets examine this similar to as before. First, failure to buy. We should choose a
when

EU(a) > EU(b)
↔

pr(x + y) + (1− pr)x > yp

↔
x

y
< p(1− r)

But PT predicts we will not when

V (a) < V (b)
↔

v(x) + w−(pr)(v(x + y)− v(x)) < w−(p)v(y)
↔
...

↔
w−(p)
w−(pr)

<

(
x

y
+ 1

)β

+
(

x

y

)β (
1

w−(pr)
− 1

)

The same kind of reasoning can be done for failure to skip. Even if it is possible
to find a good closed-form expression for some parameters here (pr > 0), instead
of diverging into such details, we examine and attempt to illustrate the intervals by
numerical study in next section.

4.4 Framing
To examine the sensitivity of framing the decisions in the model are reframed, here to
two other seemingly natural frames. We aim to to examine what happens with pre-
dictions if outcomes in PT are related to different reference points, thus exploiting the
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difference in evaluating gains and losses. For new reference points, consider the abso-
lute loss y and the expected loss py. This means keeping the outcomes objectively the
same, but assuming the decision-maker perceives some losses as gains, and vice-versa.
The idea is to see whether such evaluation predicts reversal of preferences for the pre-
dicted failures from the default frame. In the reminder, a reframing of a decision with
given parameters is considered successful if it is able to predict a corrected decision
failure. Evaluation is shown in next section, with the frames look like the following
(the sequence of signs in the superscript denote in order whether the outcomes are neg-
ative or positive in the new frame)

4.4.1 Certain Protection

We have the potential reframings:

• Case py < x:

– Reference py: a = (x− py, 1)+, b = (y − py, p,−py, 1− p)−+

– Reference y: a = (−y + x, 1)+, b = (0, p,−y, 1− p)0+

• Case py ≥ x:

– Reference py: a = (−py + x, 1)−, b = (y − py, p,−py, 1− p)−+:

– Reference y: a = (−y + x, 1)+, b = (0, p,−y, 1− p)0+:

4.4.2 Risky protection

Next turn to the non-perfect protection mechanisms. As previously seen what com-
plicates things is that buying protection may now have two outcomes, that of suc-
cessful protection and that of an even larger loss. For the risky protection we have
y + x < y < {py < x, x < py}s < 0. We have the potential reframings:

• Case py < x:

– Reference py: a = (x+y−py, pr, x−py, 1−pr)−+,b = (y−py, p,−py, 1−
p)−+

– Reference y: a = (x, pr, x− y, 1− pr)−+, b = (−y, 1− p)+

• Case py ≥ x:

– Reference py: a = (x + y − py, pr, x − py, 1 − pr)−−6, b = (y −
py, p,−py, 1− p)−+

– Reference y: a = (x, pr, x− y, 1− pr)−+, b = (−y, 1− p)+

6NB! V reduces to v(x− py) + w−(pr)(v(x + y − py)− v(x− py))
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5 Numerical Evaluation

This section describes how to use numerical methods to study the impact of the above
issues. Two things are studied:

First, to examine how PT predicts that decisions will go wrong. The following
method is used here: fix y = −5000 (somewhat arbitrarily to study the problem, but it
fits the monetary scale to which Prospect Theory was fit [18]) and iterate (discrete) x ∈
[y, 0] to see what PT predicts for the scale used in PT. For each of the parameters (x,p
and also r for risky protection) PT is applied and the predicted outcome is compared
with the normative decision prescribed by EU. This is used to see which kinds, with
respect to prarameters, of decision problems are predicted to be sensitive to decision
failure.

Second, how robust the found decision failures are to the frame of the prospects.
This is done by reframing the problems to be expressed from different reference points.
For each seen buy or skip failure PT is used to evaluate the same parameters when
using a different reference-point to see if reframing predicts a reversal in preferences
(”correcting” the failure). The new reference points are based on applying PT for the
absolute loss y and expected loss py as above, which seem to be the most plausible
frames alternatives.

5.1 Results

The numerical results show that PT predicts decisions to go wrong for some x/y inter-
vals for certain parameters in both problems.

For certain protection, fig 3 shows the boundaries of the x/y intervals where PT
predicts failure in decisions. The interval (between the curves) for small probabilities
predicts failure to skip (risk-aversiveness), and for larger probabilities for which x/y
prediction of failure to buy (risk-seeking).

For risky protection, see fig 4 and 5 for where failures are predicted at all for some
x/y. For lower and upper boundaries of failure to buy see fig 6 7, and for failure to
skip see fig 8 and 9.

For reframing certain protection, see fig 10 and 11. Reframing cases of failure to
buy is predicted successful in reversing preferences in 90.8% and 100% for the absolute
and expected frames, respectively. Reframing when failure to skip had 0%(!) success
rate.

For reframing risky protection, see fig 12-15. For the z-axis, -1 denotes that no
failures have been predicted (avilable for successful reframing) in the initial test. The
other data points denote how large fraction of decision failures are successfully cor-
rected under another frame. Success rate for failure to skip: absolute frame 13.5%,
expected frame 59.2%. Success rate for failure to buy: absolute frame 74.5%, ex-
pected frame 74.5%. There is full overlap by the largest amount of success in both
cases. These experiments show that there are clearly scenarios where a large fraction
of the predicted decision problems can not be fixed by reframing the expressed risk.
Knowing the correct numbers may be used to predict deviation from rational security
policy.
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6 Conclusion
We have considered when quantified risk is being used by people making security de-
cisions. An exploration of the parameter space in two simple problems showed that
results from behavioral economics may have impact on the usability of quantitative
risk methods. The results visualized do not lend themselves to easy and intuitive ex-
planations, but we view our results as a first systematic step towards understanding
security problems with quantitative information.

There have been many proposals to quantify risk for information security, mostly in
order to allow better security decisions. But a blind belief in quantification itself seems
unwise, even if it is made correctly. Behavioral economics shows systematic deviations
of weighting when people act on explicit risk. This is likely to threaten security and its
goals as security is increasingly seen as the management of economical trade-offs. We
think that these findings can be used partially to predict or understand wrong security
decisions depending on risk information. Furthermore, this motivates the study how
strategic agents may manipulate, or attack, the perception of a risky decision.

Even though any descriptive model of human decision-making is approximate at
best, we still believe this work gives a well-articulated argument regarding threats with
using explicit risk as security metric. Our approach may also be understood in terms of
standard system specification and threat models: economic rationality in this case is the
specification, and the threat depends on bias for risk information. We also studied a way
of correcting the problem with reframing for two simple security decision scenarios,
but only got partial predictive support for fixing problems this way. Furthermore, we
have not found such numerical examinations in behavioral economics to date.

Further work on this topic needs to empirically confirm or reject these predictions
and study to which degree they occur (even though previous work clearly makes the
hypothesis clearly plausible at least to some degree) in a security context. Furthermore,
we think that similar issues may also arise with several forms of quantified information
for security decisions.

These questions may also be extended to consider several self-interested parties,
e.g. in game-theoretical situations. Another topic is using different utility functions,
and where it may be normative to be economically risk-aversive rather than risk-neutral.

With respect to the problems outlined, rational decision-making is a natural way to
understand and motivate the control of security and requirements on security metrics.
But when selecting the format of information, a problem is also partially about usabil-
ity. Usability faults often turn into security problems, which is also likely for quantified
risk. In the end the challenge is to provide users with usable security information, and
even more broadly investigate what kind of support is required for decisions. This
is clearly a topic for further research since introducing quantified risk is not without
problems. Using knowledge from economics and psychology seems necessary to un-
derstand the correct control of security.
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Figure 3: Failures with certain protection
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Figure 4: Failures (red) with risky protection
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Figure 5: Failures (red) with risky protection
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Figure 7: Failure to buy risky protection: upper bound
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Figure 8: Failure to skip risky protection: lower bound
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Figure 9: Failure to skip risky protection: upper bound
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Figure 12: Reframing risky protection (fail to buy)
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Figure 13: Reframing risky protection (fail to buy)
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Figure 14: Reframing risky protection (fail to skip)
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Figure 15: Reframing risky protection (fail to skip)
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A Values and weights in (Cumulative) Prospect Theory
This section contains a few technical details about prospect theory and the differences
between the original [17] and the cumulative version [18]. First, recall the expected
value of a prospect P is expressed as

EU(P ) =
n∑

i=1

pixi

The original version of PT offers an almost similarly elegant and simple formula,
for prospects with two outcomes the theory claims there is a function V ∗ that describes
ordering of preferences (as a utility function) as

V ∗(P ) = π(p1)v∗(x1) + π(p2)v∗(x2)
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where the value and weighting functions v∗ and π are similar to the functions later
used in the cumulative version (Fig 1, 2). But the cumulative version for two prospects
(applied in this work) does not appear that simple, at least on the surface. A good
question is: Why? First, original prospect theory is limited to describe prospects with
only two non-zero outcomes. Second, probabilities are judged slightly different for
losses than gains - the original version uses the same weighting function π both for
positive and negative outcomes. Third, a somewhat more technical need is to tackle
a problem known as stochastic dominance (for more on this, see e.g. [40]) that arises
to the non-linearity in probability weighting. Several so-called rank-based theories
have been proposed to also provide also this third property, where Kahneman/Tverskys
version is one of the proposed theories.

Now, Cumulative Prospect Theory proposes the following: given a prospect P =
(x1, p1, x2, p2, ..., xn, pn) where

∑
pi = 1 and the outcomes x1, x2, ..., xn are increas-

ingly ordered as x1 ≤ x2 ≤ ... ≤ xk ≤ 0 ≤ xk+1 ≤ ... ≤ xn, then there exists a
function v that describes ordering of preferences with a function V (similar to above)
as

V (P ) =
k∑

i=1


w−




i∑

j=1

pj


− w−




i−1∑

j=1

pj





 v(xi)

+
n∑

i=k+1


w+




i∑

j=1

pj


− w+




n∑

j=i+1

pj





 v(xi)

To obtain the simple form for application in section 3.2 is a matter of applying this
formula to specific forms of prospects (e.g. for when all outcomes are negative and so
forth).

The value and weighting functions used in this theory are shown in Fig 1, 2 -
as introduced in section 3.2. The value function models both the widely accepted
principle of diminishing marginal utility (gains and losses), as well as loss aversiveness
- that gains and losses by equal magnitude do not cancel out. The weighting function
describes overweighting for smaller and underweighting of moderate or relatively large
(cumulative) probabilities in the formula for PT above.

23


