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Abstract
We propose a comprehensive formal framework to classify all market models

of cyber-insurance we are aware of. The framework features a common termi-
nology and deals with the specific properties of cyber-risk in a unified way: in-
terdependent security, correlated risk, and information asymmetries. A survey of
existing models, tabulated according to our framework, reveals a discrepancy be-
tween informal arguments in favor of cyber-insurance as a tool to align incentives
for better network security, and analytical results questioning the viability of a mar-
ket for cyber-insurance. Using our framework, we show which parameters should
be considered and endogenized in future models to close this gap.

1 Introduction
Cyber-insurance, the transfer of financial risk associated with network and computer
incidents to a third party, has captured the imagination of professionals and researchers
for many years. Yet reality continues to disappoint the proponents of cyber-insurance.
Although its roots in the 1980s looked promising, battered by events such as Y2K and
9/11, the market for cyber-insurance failed to thrive and remained in a niche for unusual
demands: coverage is tightly limited, and clients include SMBs1 in need for insurance
to qualify for tenders, or community banks too small to hedge the risks of their online
banking operations. Even a conservative forecast of 2002, which predicted a global
market for cyber-insurance worth $2.5 billion in 20052, turned out to be five times
higher than the size of the market in 2008 (three years later) [Bae03, BMR09]. Overall,
in relative terms, the market for cyber-insurance shrank as the Internet economy grew.

A similar development can be observed in the academic literature. Early works
in the 1990s focused on the general merits of cyber-insurance [And94], or protocols
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borrowed from digital cash to enable risk reallocation in distributed systems [LMN94].
In the late 1990s, when the business perspective of information security became more
prominent, visions of cyber-insurance as risk management tool were formulated [Var00,
YD02, Grz02, Bae03, GLS03, Sch04b, MYK06, BP07]. These contributions are largely
descriptive. If formal, they almost exclusively model the demand side of cyber-insu-
rance (i.e., the trade-off between allocation of security budget on protection mecha-
nisms versus insurance against residual risks). In this literature, the observable un-
derdevelopment of the market for cyber-insurance is often attributed to insurers’ lack
of experience with a new kind of risk, combined with insufficient actuarial data hin-
dering competitive pricing. Nevertheless, most authors conclude with a positive out-
look, in confidence that a resolution of these impediments is merely a matter of time.
More recent works acknowledge that the market failed to grow as expected. They
attempt to explain market failure with economic equilibrium models, each tailored to
one of three obstacles: interdependent security [KH03, OMR05, BL08], correlated risk
[Böh05, BK06], and information asymmetries [SSFW09, BMR09]. Their conclusions
are more reserved about the prospects of a mature market for cyber-insurance, unless
the specific obstacle under investigation could be resolved. However, taking this evi-
dence together, it appears that the market failure can only be overcome if all obstacles
are tackled simultaneously. This calls for a comprehensive framework for modeling
cyber-risk and cyber-insurance, which also allows us to study the relations between,
and the relative importance of, the specific obstacles.

We do not claim to have a silver bullet solution to kick-start the cyber-insurance
market, but we have not yet lost our optimism entirely. In this paper, we present a
unifying framework which permits to classify the literature and identify areas that have
not been covered by the existing models. Our objectives are to take stock, systematize
in a common terminology, and give a structured account of a growing field with contri-
butions spread over disperse communities. Our hope is that such a unifying framework
helps navigating the literature and stimulates research that results in a more formal ba-
sis for policy recommendations involving cyber-risk reallocation [ABCM08, Sect. 9.1].
In addition, we suggest that our framework can be used to partly standardize the ex-
position of cyber-insurance papers, thus simplifying the tasks of authors’ presentation
and evaluation of the results by the research community.

One key theme in designing such a framework is to identify factors specific to
cyber-risk and cyber-insurance. This clarifies where novel contributions are needed.
Otherwise, one should resort to the standard results for indemnity insurance, which is
a well-developed field in economics. However, it largely disregards the specifics of
information technology and networked environments.

Our framework breaks the modeling decisions down to five key components: (1)
network environment, (2) demand side, (3) supply side, (4) information structure,
and (5) organizational environment. Each component covers several model attributes,
which imply specific modeling decisions. We discuss all attributes, including their
common formalization, with particular emphasis on attributes that are specific to cyber-
risk. For less cyber-specific attributes, references to the standard economic literature
on indemnity insurance are provided.

This paper makes several contributions. Our proposed framework is presented in
Section 2. Within this presentation, the subsection on network environment (Sect. 2.1)
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introduces a unified way of dealing with both interdependent security3 and correlated
risk, two obstacles to the development of a cyber-insurance market that so far have
been studied only separately. The remaining subsections of Sect. 2 describe the stan-
dard economic approach to insurance, augmented to cyber-risk where specific prop-
erties arise, in our common notation and terminology. Our terminology is extensible
beyond the existing models in the literature to include relevant factors to cyber-risk.
These include, for instance, the often-claimed but barely formalized feedback loop to
ICT4 manufacturers, who affect network security via product quality [Böh05, AM06].
Section 3 applies our framework by classifying the relevant literature along the frame-
work’s key components. We demonstrate the general usefulness of our framework and
its suitability to ease comparisons between different models in a standardized terminol-
ogy. The framework further permits to pinpoint the driving forces behind the results of
models in the literature. Our hope is that this framework will serve as starting point for
more systematic extensions in future work by both economists and security engineers.
General remarks on the state of the research field and possible directions are discussed
in the concluding Section 4.

2 A General Framework for Modeling
Cyber-Insurance Markets

Our goal is to develop sufficiently rich framework which unifies the various approaches
of modeling cyber-insurance markets in the literature, which is quite diverse. The
settings of the existing models differ not only by the particulars of player objectives on
demand and supply sides, but also by the assumptions about network structure, player
information, actions of the players, and the timing of these actions. To structure this
variety, we identified five key components as depicted in Fig. 1.

Our framework includes two natural components, which correspond to demand and
supply side of the risk reallocation mechanisms. We make the convention to call par-
ties on the demand side agents, and parties on the supply side insurers. Most of the
specific features of cyber-risk are described in a component called network environ-
ment. In the essence, this component distinguishes a cyber-insurance market from the
conventional economic models of insurance. The network environment is composed
of atomic elements called nodes. Nodes are controlled by agents, who extract utility
from the network. This goes along with exposure to risk. We believe the distinction
between agents on the demand side and nodes on the network level is useful to sepa-
rate the business side from the technical risk arrival process. Obviously, in a general
framework, we have to allow agents to influence the network environment (see arrow
“design” in Fig. 1). The two remaining components are information structure, which
bundles all modeling decisions that affect the distribution of knowledge among the
players about the state of the model, and organizational environment, which covers
various public and private entities, whose actions affect network security and agents’

3Following the economics of security literature, we use the term “interdependent security” to refer to
externalities in security decisions. The term does not imply a general reference to statistical dependence,
which would subsume correlation.

4ICT: information and communication technology
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Figure 1: Framework for modeling cyber-insurance markets

security decisions. The latter encapsulates parties who may intervene with the cyber-
insurance market although they do not directly appear on the demand or supply side.
Awarding information structure a component of its own is justified by the prevalence of
information asymmetries in cyber-risk management and their decisiveness in shaping
insurance markets in general and cyber-insurance markets in particular. The organi-
zational environment is needed to expand formal models of cyber-insurance markets
to a broader system view on cyber-security. We deem such breadth necessary to draw
sound and balanced policy conclusions from analytical models.

Before we advance to the details of modeling decisions, let us briefly recall what
kind of research questions can be answered with models of cyber-insurance markets.
Here, we can distinguish three points of interest:

1. Breadth of the market: Looking at the equilibrium condition between demand
and supply side, one can pose research questions, such as “Under which condi-
tions will a market for cyber-insurance thrive?” or “What are the reasons behind
a market failure and how to overcome them?”

2. Network security: Using parameters of the network environment as dependent
variable, one can pose research questions, such as “What is the effect of an in-
surance market on aggregate network security?” or “Will the Internet become
more secure if cyber-insurance is broadly adopted?”

3. Social welfare: Taking a global perspective, one can account for costs and ben-
efits of all involved parties in welfare analysis and ask questions, such as “What
is the contribution of cyber-risk reallocation to social welfare?”

In the following, we will discuss the modeling options for each component.

Notational Conventions We use upper-case letters for functions, F (·); sans-serif
letters for random variables, X; and lower-case letters for variables and realizations of
random variables, x. Symbols printed bold-face denote vectors, x; with components
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indexed by a subscript, {x1, x2, . . . }. We slightly abuse the notation by adding sub-
scripts to vectors, xj 6=i, which denotes that all components of x except xi appear as
argument of a function. Derivatives are denoted by the operator δ with the argument
as suffix, e.g., if F (x) = x2 we have δxF (x) = 2x and δxxF (x) = 2. This notation
is extendable to partial derivatives when needed. Special function E(X) denotes the
expected value of X and P (X = 1) is the probability of the event specified in its ar-
gument. Expectations are taken over random realizations of nature in the risk arrival
process.

2.1 Network Environment: Connected Nodes
Two properties distinguish cyber-risk from conventional risk. First, nowadays ICT re-
sources are not isolated machines, but interconnected in a network. Their value largely
emerges from this interconnection, therefore the analysis of risk and potential losses
must take into account the inter-dependencies between connected nodes. Second, most
ICT resources are universal automatons and thus have a dual nature: if operational,
they generate value for its operators and therefore become loss sources when they mal-
function; moreover, when abused or “taken over” by malicious attackers, benign nodes
can become threats to other nodes.

In our framework, nodes are atomic elements of the network. The risk arrival pro-
cess is defined at the per-node basis. Note that this bottom-up approach represents
the micro perspective. That is, it targets cyber-insurance contract design for an indi-
vidual agent (who controls a collection of nodes). This corresponds to the individual
risk model approach in the indemnity insurance literature. Its counterpart is the com-
pound risk model [PW92]. In that case, an aggregate perspective is taken that abstracts
from micro-particularities of the network. Hence, the latter approach is less suitable
for modeling the particularities of cyber-risk occurring on the level of nodes, and we
are not aware of any cyber-insurance literature following it.

Recall that our notion of network environment does not necessarily reflect physical
connection (e.g., a network link); it includes other forms of interconnectedness, such
as logical links or ties in social networks (e.g., for social engineering attacks). Com-
mon with the formal literature on cyber-insurance, we abstract from the type of threat:
different threats (e.g., targeted attack, viruses and worms, social engineering) may be
associated with different network environments [BK06]. In the sense of our frame-
work, real-world cyber-insurance policies covering a range of threats should therefore
be understood as a bundle of contracts.

We summarize the network environment of models for cyber-insurance by four
attributes: defense function, network topology, risk arrival, and attacker model.

2.1.1 Defense Function D

The defense function D describes how security investment affects the probability of
loss p and the size of the loss l for individual nodes. Its most general form is a proba-
bility distribution,

p = D(l; s, w, . . . ), (1)
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where s is the level of security5 and w is the initial wealth, of which the loss l is
typically a fraction.6 Under the assumption of a Bernoulli distribution, a node suffers a
potential loss of l with probability p and no loss with probability 1− p. This simplifies
the defense function to,

(p, l) = D(s, w). (2)

For the Bernoulli distribution, let R be the random variable for losses with realiza-
tions r ∈ {0, l}. We have E(R) = pl, which is commonly assumed being concave in
security investment [GL02], i.e.,

δsE(R) ≤ 0, δssE(R) ≥ 0. (3)

With strict inequalities, Eq. (3) reflects the decreasing returns to investing in security.
The early, simple models allow no security investment and normalize the potential

loss l to a constant.7 Then, p becomes exogenously fixed. To simplify the notation with
security investment, let l and w be fixed:

pi = D(s), (4)

The agent controlling node i only chooses si and takes the vector sj 6=i of all other
nodes’ level of security as given.8 This dependence of the defense function for node i
on security choices sj 6=i of other nodes is sufficient to model interdependent security
[KH03]. If not every node’s security choice influences every other node, it is of interest
to refine the dependence structure by a model of network topology.

2.1.2 Network Topology G

The network topology G is an important attribute to model the particularities of cyber-
risk. It describes the relation between elements of an ordered set of nodes. Let function
CG : {1, . . . , n}2 → {0, 1} be an indicator of connectedness, so that

CG(i, j) = CG(j, i) =
{

0 if nodes i and j are connected,
1 otherwise. (5)

Technically, G is a lookup function in an undirected unweighted graph, which can be
represented in set notation (CG(i, j) = 1 iff an edge exists between vertices i and j),
or by a binary adjacency matrix. Extensions to directed graphs or weighted edges are
conceivable, but have not been considered in the literature.

Simple models use trivial network topologies, such as

• independent nodes,
CG(i, j) = 0 ∀ (i, j), (6)

5To simplify the notation, we view s as a scalar. It would be more exact to view it as a vector, with its
components corresponding to the level of security s wrt different threats.

6Sometimes the loss exceeds w. For example, this can occur in situations with legal liability.
7Constant l is a reasonable simplification to quantify first-party risk. We are not aware of any explicit

modeling of third-party cyber-risk, which is more difficult to bound from above.
8With the extension of 1 : m mappings between agents and nodes in Sect. 2.2.1, agents may actually

control sets of associated nodes. Nevertheless, we keep the simpler notation for 1 : 1 mappings when the
difference is not focal.
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• or fully-connected graphs,

CG(i, j) = 1 ∀ (i, j). (7)

Independent nodes represent idiosyncratic risk, and fully-connected graphs allow
us to model network externalities in situations where the exact topology appears of
minor importance, as can be argued for threats emerging from botnets on globally
reachable resources (e.g., certain kinds of phishing or spam). For example, the payout
functions for system security as a public good in [Var02] implicitly assume a fully-
connected graph because the security level of all nodes is taken into account when
calculating the state of any single node irrespective of the aggregation function (total
effort, weakest link, best shot).9 Also the toy examples of two-node cases in [KH03,
OMR05, BL08] are (very simple) instances of fully-connected graphs.

To model interdependent security or correlated risk, more expressive topologies are
more appropriate. The following types can be found in the literature:

• star-shaped graphs underly the single latent-factor model of correlated risk in
[Böh05] and the hierarchical treatment of interdependent security in [BL08],

CG(i, j) =
{

1 for i = 1 ∨ j = 1,
0 otherwise; (8)

• a generalization to tree-shaped graphs [LB08b],

CG(i, j) =
{

1 for qi = qj + 1 ∧ CG(i, k) = 0 ∀k : qk ≤ qi,
0 otherwise, (9)

with sequence q = (q1, q2, . . . , qn) containing the cumulative sum of a binary
sequence of length n with exactly one leading 0;

• Erdös-Rényi (ER) random graphs [LB08b],

P (CG(i, j) = 1) = const ∀(i, j), j 6= i; (10)

• Structured clusters, the topology behind the two-step risk arrival process in [BK06]
to distinguish internal (i.e., within-cluster) from global (i.e., between-cluster)
correlation:

CG(i, j) =
{

1 for qi = qj ∨ (i− 1)(j − 1) = 0,
0 otherwise, (11)

where q is defined as for Eq. (9) above.

We are not aware of literature using scale-free topologies to model interdependent
security or correlated risk in cyber-insurance, although this family of graphs is well-
established in the areas of reliability modeling and distributed defense for its good fit
with real-world networks [AJB00, NA06].

9Nodes are called ‘agents’ in [Var02], as they are not distinguished from players on the demand side of
an insurance market.
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The network topology can enter market models by shaping the risk arrival process
(see the following Sect. 2.1.3), or by defining the information structure when asym-
metric information is considered (see Sect. 2.4). However, we are unaware of literature
following the latter approach. In principle, layers of multiple network topologies for
different properties of cyber-risk are conceivable, e.g., to model the specific influence
of social and technical connections [CG08]. Most likely this matches reality better, but
unless exact topologies can be collected for real networks and real threats, the addi-
tional assumptions will excessively complicate the model.

2.1.3 Risk Arrival

Risk arrival is defined by the relation between the network topology G and the value
of the defense function D. We generalize Eq. (4) to

pi = Di(s, G, [xj 6=i]). (12)

As before, pi for node i depends on si, which is chosen by the agent controlling node
i, whereas G, like sj 6=i, is taken by the agent as given. Vector x = {xi} holds the real-
izations of a random vector X = {Xi} introduced to model risk arrival. For simplicity,
let Xi ∼ {0, 1} be a binary attack state of node i, where the node is compromised if
xi = 1, and secure otherwise.

We can distinguish two prototype cases with the defence function Di being

1. independent of realizations xj 6=i of X, or

2. dependent on the realizations xj 6=i of X.

In both cases, the realized loss ri at node i depends on xi, e.g., ri = l · xi.

Case 1 Let pi = P (Xi = 1) be the probability that node i will be compromised, and
p = {pi} the corresponding vector of probabilities for all nodes. Therefore, all defense
functions Di depending on elements of p via s (typically the subset of elements where
Gi,j = 1, reflecting topology), belong to Case 1. However, Di must not depend on any
xj . Thus, in Case 1,

pi = Di(s, G). (13)

Recall that the relation between p and s is given by applying D on all elements of s.

Case 2 The dependence of Di on xj creates feedback and possibly chain reactions,
as pi stochastically affects xi and thus feed into Dk of further nodes. We will refer
to this property as risk propagation,10 whereas there is no risk propagation in Case 1.
Thus, in Case 2,

pi = Di(s, G,xj 6=i). (14)

10This property is also referred to as “cascade” in physics or “contagion” in epidemiology. We prefer the
term “propagation” borrowed from the reliability and fault tolerance literature (e.g., “error propagation”),
since the alternative terms may have unintended connotations in the domain of information security. More-
over, our framework includes features that do not exactly represent the specific notions of cascade (where
loss events are deterministic) or contagion (where nodes are assumed to be homogeneous) [LBS09].
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Figure 2: Two-node case illustrating interdependent security and correlated risk in
cyber-risk arrival (Gi,j = 1)

Models with defense functions of Case 1 are easier to tract analytically as simpli-
fying reductions can be found even for non-trivial network topologies, while Case 2
is typically harder. The modeling requires recursive methods or approximations, and
may lead to dynamic equilibria [ACY05, GMT05, LBS09].

Observe that our definition of network topology and risk arrival is rich enough to in-
clude both interdependent security and correlated risk in a unified way. Indeed, in Case
1, the presence of sj 6=i in the defense function models interdependent security. In the
more general Case 2, both interdependent security and correlated risk could be mod-
eled simultaneously via sj 6=i and xj 6=i respectively. Dependence on the realizations
xj 6=i is required to model correlated risk (Case 2).

From this analysis, it also becomes apparent that interdependent security and corre-
lated risk have a common root cause: interconnected nodes. The literature on interde-
pendent security focuses on demand-side incentives of this phenomenon, which is then
mapped to the supply side via expectations. By contrast, correlated risk is genuinely a
supply-side problem. Accordingly, different models of risk arrival are more convenient
for the one or the other perspective. Interdependent security can be analyzed on the
level of individual loss expectations, e.g., E(R) with R = l · X. This does not require
risk propagation. Correlated risk affects risk-averse insurers (see Sect. 2.3) through
higher moments of the compound loss distribution, e.g., E(Z2) with Z =

∑
i Ri. In

networks, higher-order moments of joint distributions are most naturally modeled by
risk propagation.

Figure 2 illustrates this by depicting the assumed chain of causality from security
level s, which affects the probability of loss p, to the actual realization of a loss event
x for two nodes. Interconnection between nodes at various stages of this chain leads to
different phenomena, interdependent security or correlated risk. Note that correlated
risk is not necessarily a more general case, since it is possible to assume constant se-
curity. This removes the problem of free-riding from the model, which is central to
typical analyses of interdependent security. By making the one or other simplification,
both phenomena were studied separately in the past [Böh05, OMR05]. Although sep-
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arate study is possible, we argue that the combination of both is specific to cyber-risk:
conventional indemnity insurance considers neither phenomena, examples for inter-
dependent security alone include domains like airline security [KH03], and insurance
against natural disasters is a classical example for (locally) correlated risk. Cyber-risk
arrival, however, is characterized by both interdependent security and correlated risk.

2.1.4 Attacker Model

The attacker model describes actions of assumed perpetrators who intentionally let
cyber-risks materialize for their own economic advantage. However, the existing cyber-
isnurance literature routinely assumes simple probabilistic rules . This corresponds to
a notion of exogenous attacks, being caused by nature rather than strategic players.
Only players’ actions are determined endogenously, that would be, attackers react to
the agents’ and insurers’ decisions. Even in the broader field of research on informa-
tion security investment without explicit risk reallocation, considering truly strategic
attackers is uncommon; [LW02, CGK06, CRY08, FG09, Hau09] are commendable
exceptions.

Since in reality, a large share of cyber-attacks is strongly strategic, research in this
direction appears overdue. With the view of strategic attackers, increased network
security may have a positive externality on aggregate network losses, because with
higher security, attacker costs might increase, and gains decrease. Attackers reacting
to changed incentives might hence seek for alternative (and hopefully more benign)
activities.

We suggest modeling attackers as players, with objective functions, information
sets, and actions. Our framework naturally extends to include strategic attackers, but
it may be hard to choose reasonable assumptions and parameters for their capability.
Attackers could be modeled as an additional class of players or as a special type of
agents. Note that the tradition in security engineering to anticipate attackers colluding
with agents (or insurers) should be maintained in economic modeling.

2.2 Demand Side: Agents
Agents are the entities on the demand side of the cyber-insurance market. They control
one or more nodes (e.g., a corporate subnet). By the word “control” we mean that
agents make security choices for their nodes and the bear financial consequences when
they malfunction. When a cyber-insurance market provides full coverage of these risks,
it permits the agents to exchange uncertain future costs with a fixed premium, which
is paid at present. We use the term “agents” to subsume potential insurance buyers.
Firms, consumers or government and non-government organizations can be agents in
our terminology. The literature on cyber-insurance is univocal in considering agents
as players in a game-theoretic sense. The models differ in their assumptions about the
agents’ endowments and capabilities. In the following we summarize the five relevant
modeling options on the demand side: node control, heterogeneity, risk aversion, action
space, and time.
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2.2.1 Node Control

Node control describes a mapping of each agent to one (1 : 1 mapping) or multiple
(1 : m mapping) nodes. For simplicity, each node can only be controlled by a single
agent. We assume that each agent chooses security investments si...j for all nodes
under his control. His utility depends on the sum of wealth net of losses (if any) of all
nodes under his control.

Most models in the literature imply a 1 : 1 mapping (and hence may not make
the distinction between nodes and agents). However, certain phenomena, such as self-
insurance in the presence of two-step correlation [BK06], require a 1 : m mapping.
1 : mmappings also appear more realistic for corporate buyers of cyber-insurance who
seek coverage for many, possibly geographically distributed, ICT resources. There is
no simple generalization from the decision to seek insurance on the level of individual
nodes (assuming a 1 : 1 mapping) to the same decision of agents who control multiple
nodes (i.e., the optimal strategy for agents is not necessarily optimal for each node).

2.2.2 Heterogeneity

Agents (and associated nodes) can be assumed to be homogeneous or heterogeneous in

• li, their size of the loss,

• wi, their wealth,

• Di, their defense function, and

• Ui, their risk aversion and thus utility function (see Sect. 2.2.3 below).

In case of homogeneity, the respective suffixes can be omitted. We say agents are
homogeneous only if all the above-stated properties are identical for them.

Note that a 1 : m mapping in the node control may imply heterogeneous agents if
the network topology is not symmetric for each agent. Further note that homogeneous
agents might still face different outcomes through different realizations of their nodes’
random variables Xi, i.e., agent homogeneity does not imply perfect correlation.

2.2.3 Agents’ Risk Aversion

When the insurance premium is at least actuarially fair, agents seek insurance only
if they are risk averse, that is, they accept a lower expected value for their income
distribution if they can reduce uncertainty. This means reducing the dispersion of the
income distribution around its expected value.

Risk aversion is best modeled by a utility function U : R→ R which maps mone-
tary wealth w into utility u = U(w). Choosing U concave corresponds to risk-averse
agents, i.e.,

δwU(w) ≤ 0, δwwU(w) ≥ 0, (15)

with E(U(w)) being the objective function for the agents’ optimization problem.
The economic literature distinguishes two commonly imposed utility functions,
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• constant absolute risk aversion (CARA),

U(w) = −e−σw, so that
δwwU(w)
δwU(w)

= const , and (16)

• constant relative risk aversion (CRRA),

U(w) =
{

(1− σ)−1
w1−σ for σ > 0, σ 6= 1,

log(w) for σ = 1,
(17)

so that

w · δwwU(w)
δwU(w)

= const. (18)

In both cases, σ > 0 is a parameter for the degree of risk aversion. Both forms
appear in the cyber-insurance literature. CARA [OMR05] is sometimes imposed for
tractability, whereas CRRA [Böh05, MYK06] seems slightly more realistic [Pra64].
Note that risk aversion does not require a behavioral explanation (which could be diffi-
cult to maintain in the paradigm of rational firms that leave risk shaping to investors on
efficient capital markets). It is sufficient, for instance, to impose a resource constraint
for repairing failed nodes to introduce risk aversion indirectly, as shown for a single
firm in the context of queuing theory in [CKK05].

2.2.4 Action Space

Established models differ in the action space for agents wrt their insurance purchase.
Modeling options are:

• Buying full or partial cyber-insurance: in case of full insurance, the agent has
only binary choice between a full coverage of the potential loss l or no insurance
at all, i.e., insurance coverage β ∈ {0, 1}. Partial insurance lets agents acquire
coverage for a fraction of the potential loss, i.e., β ∈ [0, 1].

Assume for now a 1 : 1 mapping between agents and nodes, then the expected
wealth for agents who insure against a fraction βi ∈ [0, 1] of a unit potential loss
(l = 1) is:

E(Wi) = Di(s, G)(βi − 1) + wi − βiρ. (19)

ρ is the premium for full insurance. In terms of expected utility we obtain:

E(Ui) = Di(s, G)U(wi+βi−βiρ− 1)+ (1−Di(s, G))U(wi−βiρ). (20)

When the insurer has zero transactional and other expenses, and his expected
profit from the contract is zero, then such a contract (and its premium) is called
actuarially fair. It is a well-known result that at actuarially fair premiums, risk-
averse agents strictly prefer full over partial coverage. When partial insurance is
available and demanded (i.e., for premiums above the actuarially fair level), it is
sometimes difficult to define practical criteria for detecting market failure. This
is so because theoretical solutions may exists where agents demand small, yet
economically insignificant coverage.
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• Security investment: agents can self-protect by choosing si > 0 for their nodes
and thereby reduce their expected loss (first inequality in Eq. (3)). Taking into
account the cost of security investment, we obtain the following expressions for
expected wealth (from Eq. (19)),

E(Wi) = Di(s, G)(βi − 1) + wi − βiρ− si, (21)

and expected utility (from Eq. (20)),

E(Ui) = Di(s, G)U(wi + βi(1− ρ)− si − 1)
+ (1−Di(s, G))U(wi − βiρ− si). (22)

In the standard case of interdependent security, D is defined so that individually
rational agents who adjust si to maximize Eq. (22) create externalities on other
agents’ loss distributions [KH03, OMR05].

Some authors allow for a second kind of security investment without externalities
and refer to it as self-insurance. Self-insurance reduces the size of the loss only
for the nodes who invest into it [GCC08, BL08].11 Self-insurance is mostly
studied together with self-protection, so we give the combined expression for
the expected wealth:

E(Wi) = Di(s, G)(βi + αi − 1) + wi − βiρ− si − S(αi), (23)

where αi ∈ [0, 1] is the level of self-insurance and S(α) is a cost function (typ-
ically linear in α). The expected utility can be derived accordingly. To reflect
the normative principle of indemnity, which states that insurers only compensate
actual damage, a constraint α+ β ≤ 1 should be imposed.

• Endogeneous network formation: it is conceivable, yet unexplored in the cyber-
insurance literature, to consider changes to the network topology as operable
actions for agents [GGJ+08]. For example, agents could establish or break up
links to other nodes with the intention to reduce their expected loss. We refrain
from introducing terminology blindly, but our framework straightly extends in
this direction. Such research could bring us closer to the often-stated engineering
goal of (re-)designing network architectures in a more insurable way [BL08]. We
believe that bottom-up change, driven endogenously by agents’ incentives, might
be much more implementable than visions of centrally coordinated deployment
of a more resilient infrastructure.

A simple first step would be to consider platform diversity and switching (say,
between operating systems) as an endogenous network formation problem. Plat-
forms are represented as disconnected star-shaped segments in the network topol-
ogy. The center node of each star is the latent factor of a simple risk-arrival model

11The term “self-insurance” is borrowed from standard economic literature [EB72], where is has a slightly
different meaning. There, it refers to the reduction of the size of the loss (as opposed to self-protection, which
reduces the probability of a loss), but neither is connected to externalities. So the term should be used with
care, in particular, since the term “self-insurance” is also used without reference to externalities in the cyber-
insurance literature [BK06].
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with correlation. A node can switch from one platform to another by resolving
the connection to the existing center node and establishes a new one to the center
node of the target platform.

2.2.5 Time

Simple models of a cyber-insurance market can be formulated for a single shot. This
means, all choice variables are set only once by all agents (though not necessarily
simultaneously, e.g., in [Hof07, LB09, SSFW09], insurers move first, then the agents
choose their actions).

When risk propagation is present, even in a single-short formulation, calculating
nature’s move may require a sequence of updates of Di as realizations x change. Note
that the result may then be sensitive to the initial loss event, i.e., depend on the order in
which nodes are updated [LBS09]. To avoid ambiguity, the order should be specified in
the model formulation (e.g., single factor models are typically updated from the center
of a star-shaped network to its leaves).

Although we cannot foresee any specific benefit that would justify the effort of for-
mulating the market model for repeated or continuous-time games, initial attempts of
dynamic analysis of demand-side security investment come to interesting conclusions,
e.g., on the merits of reactive versus proactive security investment [GLL03, BM09]. It
remains to be seen if these models, augmented by (simple forms of) cyber-insurance
markets, come to genuinely new insights.

As a note of caution, we do not see repeated games as a particularly pressing ex-
tension. Repeated games require a static or predictably evolving environment. Rapid
technological changes that continue in today’s ICT environment, limit the usability of
repeated games.

2.3 Supply Side: Insurers
Modeling the supply side with insurers as players is essential to analyze market equilib-
ria and the verification of market existence. Early literature has treated cyber-insurance
as a choice available to an agent when allocating the security budget. Oftentimes, such
papers omit a model of the supply side and hence are “blind” to potential supply-side
market failures.

We summarize the supply side by five attributes: market structure, risk aversion,
markup, contract design, and higher-order risk transfer.

2.3.1 Market Structure

A central design decision when modeling cyber-insurance is the number of insurers:
one (monopoly), several (oligopoly), or many (competition). In the cases of oligopoly
and competition, insurers can be modeled homogeneous or heterogeneous, similar to
agents (Sect. 2.2.2).

The dominant model in the cyber-insurance literature is a naive, homogeneous,
competitive insurer market structure. Competition is convenient, because it justifies the
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assumption that premiums fall to the marginal cost; it is a bit naive though, as the mar-
ket is assumed to be infinitely large. Partitioning an insurance market reduces the size
of each insurers’ risk pool, thereby making extreme outcomes more likely. In addition,
competition does not always improve the efficiency of insurance markets. Competi-
tive behavior in gaining superior information about agents’ risks can even destroy the
insurance market [RS76, RS97].

Monopoly, the obvious alternative, is rarely chosen for the difficulty of modeling
the demand function, which is an essential input to the insurer’s profit-maximization
problem.

2.3.2 Insurers’ Risk Aversion

A simplification that appears in standard economics textbooks is to assume risk-neutral
insurers. However, the insurance industry is regulated in practice to prevent profit-
maximizing insurers from taking excessive risk. A typical regulatory measure is a
requirement to hold safety capital. So it is natural to model risk aversion by this re-
quirement instead of a concave utility function.

Let Z be a random variable of the aggregated loss of all n risks in an insurer’s pool
for a single period,

Z =
n∑
i=1

βiRi. (24)

A risk-neutral insurer breaks even when

E(Z) = ρ

n∑
i=1

βi, or E(Z) = nρ for the special case βi = 1 ∀i. (25)

However, without additional capital, this insurer would go bankrupt whenever the re-
alization of Z exceeds its expected value; for (approximately) symmetric distributions,
this happens in every second period. To prevent this, safety capital c is required so that
(for βi = 1 ∀i)

P (Z > nρ+ c) ≤ ε, (26)

where ε is the maximum residual risk of bankruptcy defined by the regulator. Observe
that when ε becomes small, the left side of the inequality in Eq. (26) increasingly
depends on the right tail of the distribution of Z. Insurers can reduce c if the tail is short,
so they prefer lower dispersion of Z. This makes them risk averse (see Sect. 2.2.3).

Due to this dependence on the tail structure, it is relevant to analyze the cumulative
distribution of cyber-risk with distribution functions that have parameters for the shape
of their tails. Simulation experiments and empirical tests for data on cyber-attacks can
be found in [BK06], who model correlated risk with Student-t copulas and estimate
from honeynet data, and [MS09], who study the tail structure of data released through
breach disclosure laws in the US.

2.3.3 Markup

Let E(R) be an actuarially fair premium. Then,

(1 + λ)E(R) (27)
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is the premiums that corresponds to a loading of λ, which can be interpreted in multiple
ways:

• Administrative cost associated with the contract;

• Insurer’s profit: a fixed profit extracted per contract, sustainable only for imper-
fectly competitive and regulated markets;

• Cost of safety capital: the cost of holding safety capital c > 0 can be distributed
on all n contracts belonging to the pool,

λ =
c · I(ε)
n · E(R)

, (28)

where function I : [0, 1]→ [0, 1] gives the real market interest rate demanded for
risk with probability of default ε. I is monotonically increasing in its argument.
Note that c depends on ε and the distribution of Z (see Eq. (26)).

As correlated risk does not affect the distribution of individual Ri, but the distri-
bution of Z, it affects the existence of an insurance market via λ only for risk-averse
insurers. So instead of modeling correlated risk on the level of the network environ-
ment, similar outcomes can be obtained (a) by setting the dispersion of Z exogenously
and modeling risk-averse insurers, or (b) by imposing a strictly positive λ (e.g., in
[OMR05]). Obviously, in both cases, the direct relation to measures of correlation
between individual risks disappears.

2.3.4 Contract Design

Contract design by insurers corresponds to and defines part of the agents’ action space.
The space of contract offers can be modeled as a set of tuples, of which agents can
choose elements.

• Fixed premium: In the simplest case, the insurer sets a premium ρ for a unit
potential loss. Agents can choose βi.

• Premium differentiation: Contracts are tuples (ρ, s) offering premium ρ condi-
tional to a security investment of at least s. To enforce premium differentiation,
insurers must be able to observe s. This way, one can model rebates in the
insurance premium for better security practices. Assuming symmetric informa-
tion (for now), premium differentiation can prevent adverse selection and partly
internalize the negative externalities of interdependent security [SSFW09]. Ex-
tensions of premium differentiation to include self-insurance (ρ, s, α) are con-
ceivable but have not been studied so far.

• Contract with fines: Another scantly explored [Hof07, LB09] direction are con-
tracts with fines. Even if s cannot be observed or is too costly to measure at the
time of signing the contract, insurers could be in a position to (stochastically)
learn about s later on (e.g., when a claim is filed, or just randomly). So agents
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and insurers could agree on contracts of the form (ρ, s, f), where f is a fine to
be paid by agent i to the insurer in case of a discovery that si < s. Interest-
ing cases to study emerge if the insurer can observe aggregated properties of
s, thereby infer the number of ‘contract violations’, and adjust the intensity of
contract monitoring endogenously.

2.3.5 Higher-Order Risk Transfer

Insurers need not be the last step in a chain of risk transfers. Although barely modeled
explicitly in the cyber-insurance literature so far, we can distinguish three prototype
cases:

• Cyber-reinsurance: Most naturally, the idea of reinsurance for dealing with rare
catastrophic events seems applicable to cyber-insurance. Modeling reinsurance
markets is straight-forward with ‘insurers’ taking the role of ‘agents’ and rein-
surers become ‘insurers’. Instead of R > 0, the loss events become Z > τ ,
where τ is a threshold for tail risk. Obviously, reinsurance is more efficient
only if reinsurers can pool risks; this assumes the existence of many insurers
with independent (or at least loosely correlated) risk pools. For conventional
insurance branches, this is usually achieved by regional or international diversi-
fication. However, due to the global homogeneity of cyber-risk, often attributed
to the homogeneity of installed systems [Böh05, GBG+03], cyber-reinsurance
is virtually not existent. In January 2002, reinsurers even excluded cyber-risks
explicitly from their contracts with insurers in fear of global catastrophic events.

• Catastrophe bonds: Modern finance has found countless ways of transferring
bundles of risk through financial markets. Catastrophe bonds (short: cat bonds)
are financial instruments which pay a decent yield as a risk premium in peri-
ods without catastrophic events, but lose their value in case such events occur
[D’A92]. Originally developed to facilitate earthquake insurance and related
natural perils, cat bonds seem less suitable to transfer cyber-risk. In [ABCM08]
it is argued that cat bonds are inadequate for cyber-risks because they may im-
pose adverse incentives on investors, who could improve their financial wealth
by causing or commissioning a cyber-attack.

• Exploit derivatives: Other financial instruments are tailored more specifically to
cyber-risk and avoid such adverse incentives. The concept of exploit derivatives
links the payout of the financial instrument to the discovery of vulnerabilities in
systems, that is, at a stage before actual losses occur. So even if incentive incom-
patibilities cannot be ruled out entirely, compared to cat bonds, selfish actions of
of individual players are less likely to cause tremendous social damage. More-
over, it is argued that exploit derivatives can form a kind of prediction market
[WZ04] to facilitate information sharing about system vulnerabilities, thereby
mitigating the information asymmetries prevalent in cyber-security (see also the
following Sect. 2.4). However, while exploit derivatives might work for threats
related to undiscovered vulnerabilities, this type of threat accounts only for part
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of the cyber-risk our society is exposed to. Exploit derivative are informally de-
scribed and compared to cyber-insurance as risk management tools in [Böh06],
but we are not aware of a formal market model including such instruments.

2.4 Information Structure
The importance of information for the provision of network security is generally ac-
knowledged. Considerable research was devoted to developing metrics aiming to pro-
vide better information about security levels on various levels of aggregation (agents
[Soo00], products [Sch04a], networks [Sha04, GC09]). At the same time, it is theoret-
ically understood and practically observable that strong disincentives keep information
sharing below socially optimal levels [GOG05]. Relevant information may not exist,
yet it is often the case that it exists but is not available to the decision maker in need for
it. This distribution of information is captured in the information structure.

Slightly abusing standard game-theoretic terminology, we define perfect informa-
tion as the situation in which no uncertainty is present. Then, no risk is present, and
no insurance is needed. Alternatively, information can be imperfect, i.e., uncertainty
is present. Then, we distinguish two cases: symmetric information and asymmetric
information.

We define symmetric information as environment with no (i.e., or hidden) private
information. Our definition implies that all players, at all times have identical informa-
tion about the environment, and incur no costs (or delays) associated with information
processing.

We define asymmetric information as environment where some players have private
information, meaning that this information is not available to other players. Situations
in which information costs are present and prohibitively high for some players are
equivalent to situations where no information exists. Such settings are also covered
by our notion of asymmetric information. Observe that it makes no difference at this
stage whether the information is factually costly to obtain, or not taken into account for
decision making due to agents’ cognitive frictions, such as bounded rationality.

There exist various interactions between information structure and insurance mar-
kets. On the one hand, an exogenously given information structure may dictate the
conditions under which an insurance market exists. On the other hand, the presence
of cyber-insurers (and an adequate regulatory framework) has the potential to change
the information structure for cyber-security. Hence, the information structure has to be
treated thoroughly, and ideally endogenously, in market models for cyber-insurance.

2.4.1 Information Asymmetries in the Conventional Insurance Literature

Conventional insurance literature extensively considers the effects of information asym-
metries and their ramifications for contract design. Two important problems caused by
inferior information of insures about agents are recognized:

• adverse selection occurs if insurer cannot distinguish agents of different types ex
ante (before the contract is signed),
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Table 1: Overview of relevant information asymmetries

Information Uninformed party Informed party

1. type of nodes agents attacker (nature)

2. agents’ choice insurers each agent

3. agents’ choice other agents each agent

4. insurers’ information agents each insurer

5. insurers’ risk pools other insurers each insurer

6. effectivity of protection agents, insurers vendors

• moral hazard occurs if agents could undertake actions that affect the probability
of loss ex post (after the contract is signed and is effective).

Both obstacles are relevant to cyber-insurance, and it has been shown in [SSFW09]
that the problem of moral hazard exacerbates when combined with situations of in-
terdependent security. This observation, and the fact that information about security
is hard to gather and evaluate (not to mention share it), suggests that pronounced in-
formation asymmetries are the third characteristic specific to cyber-risks. To treat this
feature adequately, we refine our framework in this direction.

It is known from the economic literature that insurers have two options to structure
contracts when they cannot distinguish heterogeneous users: a pooling case, where
agents of all types are pooled into the same contract; or a separation case, where insur-
ers offer two different contracts, and agents sort themselves out according to their type
(high or low risks) [RS76].

2.4.2 Information Asymmetries Specific to Cyber-Insurance

Using our framework, we now will identify specific forms of information asymmetries
in cyber-insurance. For aspects which have already been touched in the cyber-insurance
literature, we will emphasize the link to information asymmetries.

Table 1 shows the most relevant information asymmetries by the content of the
information and the uninformed, respectively informed parties. Note that absence of
information not only means that this information is not available for decision making.
Rather, the existence of hidden information available to one party, but knowingly un-
available to another, can be used by the informed party to its advantage. We will briefly
discuss rows 1, 2, and 6 of Table 1.

Asymmetric Information: Agents about Nodes (1) Information asymmetries in
distinguishing the types of heterogeneous nodes may prevail due to the difficulty of de-
termining the security status of ICT resources. For example, it requires expert knowl-
edge or special tools to identify bots. This is so because compromised nodes do not
necessarily exhibit significant performance losses, and certain malware even takes mea-
sures to remain undetected. Although not specific to cyber-insurance, [HSA07] discuss
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this case of information asymmetry by the example of agents who are unable to distin-
guish between random failures and intentional attacks.

Related to this is the distinction between local or global knowledge of agents mak-
ing decisions for their interconnected nodes. Global knowledge simplifies the analysis
of complex network topologies, e.g., by solution concepts such as mean-fields analy-
sis, and has been applied to interdependent security in cyber-insurance [LB08a, BL08].
Aside from methodological tweaks, there exist also functional interpretations: local
knowledge appears more realistic a priori, since global knowledge becomes only ob-
servable through an intermediary or information aggregator. This is why the availabil-
ity of global knowledge, and subsequent changes in the equilibrium conditions, can be
interpreted as proxy for the effect of information sharing. [GJC09] follow this inter-
pretation and explicitly compare the impact of global and local knowledge for the case
of interdependent security.

Asymmetric Information: Insurers about Agents (2) Information asymmetries in
distinguishing different types of agents corresponds to the situation described above in
Sect. 2.4.1 for conventional insurance. [BMR09] discuss an extension specific to cyber-
insurance, where insured agents can opt for off-contract behavior and hide breaches
instead of claiming compensation from insurers. They have an incentive to do so if the
expected secondary costs exceed the contractually agreed compensation for primary
losses.

Asymmetric Information: Agents about Effectivity of Protection (6) Many au-
thors have called a developed cyber-insurance market desirable on the basis of premi-
ums serving as security metrics: price information would counter the lemon problem
in the ICT products market [AM06], incentivize vendors to strengthen the security
level of their products, and thus improve overall security. Despite these hopes, we are
unaware of any direct attempts to model the process of information collection by in-
surers, nor considering heterogeneous manufacturers as players. Anecdotal evidence
suggests that at present, insurers do not engage into collecting and aggregating infor-
mation about network security. Moreover, it seems to be rather an exception than the
norm that cyber-insurers differentiate premiums depending on the security practices of
their insured agents [ABCM08].

2.4.3 Timing

The matter of timing is related to information asymmetries, important, but not system-
atically studied in existing cyber-insurance models. Timing involves all modeling deci-
sions on when information arrives and is revealed, and to which players. For example,
most models assume that agents observe insurers’ offered contacts, and then choose
security investments, which leads to the conclusion that moral hazard is an obstacle for
cyber-insurance. Models with other, equally justifiable, assumptions on timing could
come to different conclusions.
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2.5 Organizational Environment
Similar to the information structure, attributes of the organizational environment are
typically taken as given. However, some arguments suggesting the need for a ma-
ture market for cyber-insurance refer to feedback loops with parties outside a narrowly
defined risk-transfer mechanism. To study such effects rigorously, parameters of the
organizational environment must be included in the models, ideally as endogenous
variables.

We have identified four relevant attributes of the organizational environment (some-
times called “stakeholders” in policy contexts): regulator, ICT manufacturers, network
intermediaries, and security service providers. In the following, we present options to
include each of them into models of cyber-insurance markets.

2.5.1 Regulator

The term regulator12 refers to the government or a governmental authority with power
to impose regulation by means of enforceable law or other mandatory rules (e.g., de-
crees). Hence, the regulator is an important part of the organizational environment for
the purpose of policy analysis. A regulator can enter the model in several ways, for
example:

• Disclosure requirements can improve information for agents and insurers. Here
we can distinguish between aggregate and individual agent’s information (though
in the interest of privacy protection, the use of individual information might be
limited in practice).

• Taxes, fines and subsidies alter agents’ and insurers’ costs.

• Mandatory security impositions set lower bounds for s. This could be interpreted
as introduction of (limited) user liability, because security impositions have to be
enforced by the threat of (fixed) fines.

• Mandatory cyber-insurance sets lower bounds for β and changes the incentive
structure substantially. Also this requirement implicitly introduces a liability
regime as the coincidence of connecting a node to the network and obtaining
insurance coverage is not natural and needs to be enforceable.

• Prudential supervision: The regulator defines the acceptable residual risk ε, the
probability of insurer bankruptcy.

Mandatory insurance has been considered as a regulator’s tool in [Hof07, BL08].
In the current market environment, such a requirement appears politically inviable and
practically difficult to implement [ABCM08]. It seems more suitable to use mandatory
cyber-insurance as benchmark case of a social planner, as for instance in [SSFW09].
Liability and fines are discussed in a special section of [OMR05]. We are not aware of
specific literature on the other regulatory options in the context of cyber-insurance.

12Note that a regulator differs from a social planner in that the former is a model for a real authority
whereas the latter is a hypothetical actor, perfectly informed and omnipotent. They have in common that
both seek to maximize welfare. The social planner is usually introduced as benchmark to determine the
upper bounds for welfare. In this sense, regulators can be seen as “weaker” social planners.
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2.5.2 ICT Manufacturers

ICT manufacturers include vendors of hardware and software equipment. We distin-
guish two important roles of cyber-insurance:

• System security: ICT manufacturers’ prioritization of security in the R&D pro-
cess and their patching strategy affects the defense function D of nodes em-
ploying their products. This way, one may conceive a notion of “security pro-
ductivity”, a parameter describing security improvements per unit of security
investment for a given technology.

• System diversity, notably connected with the market structure, affects correlation
in the risk arrival process and thereby the loading λ for risk-averse insurers.

A (formally loose) connection between exogenous market structure and insurance
models can be found in [Böh05].

2.5.3 Network Intermediaries

Network intermediaries provision network connectivity services. Internet service pro-
viders (ISP) are natural intermediaries; but one can also subsume to this attribute reg-
istries, registrars, and application service providers. Possible roles of network interme-
diaries include:

• contributing to distributed defense by sharing information about observed threats
or taking down compromised nodes, thereby attenuating contagious risk propa-
gation (the success can be modeled proportional to invested monitoring cost);
and

• shaping the network topology by establishing or tearing down links strategically.
This is related to endogenous network formation (see Sect. 2.2.4).

Obviously, market structure and heterogeneity are relevant factors for network in-
termediaries, in particular since it is known that the incentives for large and small ISPs
diverge due to business-specific factors, such as peering arrangements [ABCM08]. A
cyber-insurance market model with ISPs on the demand side can be found in [RKK08],
while [GRCC10] investigate intermediaries’ role in interdependent security environ-
ment. Cyber-insurance in the context of outsourcing [GYL+07] incorporates outsourc-
ing partners as intermediaries. This notion can also be extended to include cloud host-
ing providers to accommodate this recent trend in the industry.

2.5.4 Security Service Providers

Security service providers include further agents who contribute to network security,
e.g., in helping to overcome information asymmetries through collection and aggrega-
tion of information, as trusted third parties in information sharing agreements, or to
improve information efficiency in monitoring and enforcing contracts (e.g., certifying
security levels [PW09]; or conducting forensic investigations when a claim is filed). A
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broader notion includes service providers who manage security investment decisions
on behalf of the agents. If implementable, this can help to internalize negative exter-
nalities of interdependent security [ZXW09].

∗

This completes the definition of our framework. In the following we will apply it
to survey the literature and identify open research questions.

3 Using the Framework for a Literature Survey
In this section, we demonstrate how our framework can be applied to systematize
existing work and identify unexplored aspects. Table 2 shows the relation of com-
ponents of our framework (in rows) to references (in columns). The table includes
only papers which contain (i) technical models of (ii) market-based cyber-insurance.
These papers constitute only a small fraction of the entire literature dedicated to the
problems of managing cyber-risks. In particular, Table 2 excludes the early papers
[Fis02, YD02, GLS03], which do not model the supply side, and the papers focusing
on conceptual rather than modeling issues [MYK06, PW09]. Another set of relevant
modeling papers [YLG+08, GCC08, Hau09], addressing trade-offs in cyber-risks man-
agement or discussing cyber-insurance as a tool without introducing a market in the
model, are not included in Table 2 either.13 Nevertheless, we want to stress the im-
portance of all these works for developing and refining the understanding of the field,
including the demand-side attributes of this framework (Sect. 2.2).

3.1 Market Models
Table 2 summarizes existing work on market models according to our framework. We
will first present similarities and differences between models and then discuss special
features and conclusions of the individual models.

3.1.1 Comparison Across Models

Main Obstacles The framework accounts for three factors that may hinder the de-
velopment of a market for cyber-insurance: interdependent security, correlated risk,
and information asymmetries. In [Böh05, BK06], the focus is on correlated risk,
in [OMR05] on interdependent security alone, and in [Hof07, BL08, LB09] on in-
terdependent security with minor information asymmetries. In [BMR09], asymmet-
ric information is studied without features of the network environment. By contrast,
[BL08, LB09] solve their model for non-trivial network topologies. Several authors
explicitly model the interplay between interdependent security and information asym-
metries [RKK08, SSFW09, SSW10]. More precisely, [SSFW09] study moral hazard
under different contract monitoring regimes, whereas [RKK08, SSW10] focus on ad-
verse selection.

13The term “insurance” even appears in the title of [GCC08], but it refers to self-insurance rather than
market insurance. Agents are not assumed to be risk averse in this string of research.
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Demand Side Agents are homogeneous in [OMR05, BK06, SSFW09], and hetero-
geneous in [RKK08, Böh05, Hof07, BL08, LB09, BMR09, SSW10], often as a pre-
requisite to study information asymmetries of insurers about agents (see 2.4.1). Con-
tracts with deductibles are standard tools to deal with information asymmetries. Such
contracts are introduced in [BL08, SSFW09, BMR09, SSW10]. All models featuring
interdependent security, by definition, must allow for some kind of security investment
via self-protection. This choice is binary in [Hof07, BL08, LB09] and continuous in
the other models. Modeling partial (up to and including full) insurance is common to
all models except [Böh05], where only full insurance is considered for simplicity.

Supply Side All models assume homogeneous and perfectly competitive insurers,
and most authors include a premium markup. Several authors interpret the markup as
a reflection of market power, with higher loading corresponding to more market power
[Hof07, BL08, LB09, BMR09]. This interpretation led the researchers to forgo the
profit-maximization problem of a monopolist, but their claim of studying the monopo-
listic market structures is probably too strong. We note that the connection between
an exogenous markup and market power is misleading. Alternative interpretations
of the markup, such as reflecting a regulated insurance market (see also Sect. 2.3.3),
provide equally plausible explanations in stylized models at this level of abstraction.
Conversely, if positive markups are observable in practice, this should not be over-
interpreted as indicator of market power.

Organizational Environment Current formal models are not particularly rich in
capturing parameters of the organizational environment. A link to network interme-
diaries is established in the informal motivation of [RKK08]. Also largely informally,
[Böh05] discusses a comparison of two scenarios in the context of system diversity and
the market structure of ICT manufacturers. A formal treatment of mandatory insurance
can be found in [Hof07, LB09], who indirectly introduce rebates and fines with this fea-
ture. So it remains open if mandatory insurance is a necessary tool, or whether a ‘sim-
ple’ regulation that penalizes agents for underinvesting in self-protection will be suffi-
cient. Rebates and fines are also discussed independently in [OMR05], but the models
are not comparable enough to transfer these results to the cases of [Hof07, LB09].

Research Question A single study evaluates its model from the perspective of all
three research questions: breadth of the market, network security, and social welfare
[SSFW09]. The literature inspired by interdependent security primarily investigates
network security, the most natural variable of interest in this setting. By contrast, cor-
related risk and (ex post) information asymmetries are studied from the point of view
of explaining a missing market. The link to social welfare is given in [BMR09] only
informally. Strikingly, we are not aware of any study that attempts to capture all three
obstacles theoretically and link them with social welfare.
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3.1.2 Discussion of Individual Models

Given the above finding on the incompleteness of the theoretical treatment of cyber-
insurance, one may ask what the existing results are good for. They clearly give us
some intuition on specific aspects and ultimately help to shape a general view, for ex-
ample the one embodied in this framework. We will now elaborate on individual model
features and interpretations using the harmonized terminology of our framework.

The authors of [OMR05] analyze effects of cyber-insurance on incentives for se-
curity investment in the presence of interdependent security assuming homogeneous
agents and symmetric information. It is shown that with interdependent security, secu-
rity investments are lower than without. This confirms the seminal result of [KH03] in
the presence of market insurance. In a unique analysis, [OMR05] also observe premi-
ums as a function of the competition between insurers, where competition is modeled
by declining markups. For stronger interdependence, it turns out that premiums do not
necessarily fall because agents shift towards insurance rather than security investment
to manage their security risks. Note that due to simplifying assumptions in the proof,
the analysis in [OMR05] only holds for relatively small losses compared to the agents’
wealth, and for small probabilities of loss.

The analysis in [Hof07] extends this model by heterogeneous agents and asymmet-
ric information. More precisely, security costs are assumed to be distributed uniformly
over a continuous interval, and insurers do not know each agents’ cost. The result that
security investment remains below socially optimal levels is recovered in this setting,
and later compared against a situation with mandatory insurance (offered by a single
insurer) to internalize the negative externalities of interdependent security.

The arguments in [Böh05, BK06] are exclusively on correlated risk. The author
presents conditions under which a market for cyber-insurance is viable despite an as-
sumed monoculture of installed platforms. Specifically, [Böh05] finds that a potential
market exists when clients are highly risk averse, and the probability of loss is large.
The follow-up work [BK06] refined the argument to two tiers of cyber-risk correla-
tion: internal correlation, the correlation of cyber-risks within a firm (i.e., a correlated
failure of multiple systems on the internal network), and global correlation correlation
of cyber-risk at a global level, which also appears in the insurer’s portfolio. Also the
risk arrival model has been refined from a single-factor Bernoulli model in [Böh05]
to beta-binomial models for internal correlation coupled with a Student-t copula on
the global level in [BK06]. The authors demonstrate by simulation that a market for
cyber-insurance exists for risks with high internal and low global correlation.

In [RKK08], the insurance market is framed in terms of ISPs and their customers.
Agents are assumed to have one of two types: high or low probability of loss. Since
a pooling equilibrium does not exist with competitive insurers, [RKK08] construct a
separation equilibrium (see Sect. 2.4.1). They demonstrate that for some parameters
of user types, this separation equilibrium can be destroyed. This way, [RKK08] repli-
cate a famous result in the economic literature [RS76]. If insurers cannot distinguish
agent types, there might be no equilibrium. When interdependent security is added
to this model, it becomes too complex to derive formal results. So the authors share
their intuition about possible equilibrium configurations. In our view, the difficulties
encountered in [RKK08] are instructive: with interdependent security, the problem of
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contract design becomes intractable very soon (even for two user types). Moreover,
as noted in [RKK08], the existence of an equilibrium will be even more questionable
than without interdependent security. There seems to be no obvious way out: relaxing
interdependent security by introducing sparser network topologies might help the exis-
tence of equilibria, but at the same time make the problem even more difficult to tract
analytically.

This has been witnessed by a series of publications, [BL08, LB09] (as well as
some derivative work not included in Table 2), which features the most comprehensive
treatment of network topologies (see also the specific references in Sect. 2.1.2). Agents
are mapped to nodes 1 : 1 and differ in their defense function so that the cost of security
investment varies on a continuous scale. This creates information asymmetries, since
insurers know the distribution of security costs in the population, but not each agent’s
cost of self-protection. In the equilibrium without insurance, only agents with lower
security costs invest, thereby replicating qualitatively the result reported in [Hof07] for
fully-connected graphs. When self-insurance is allowed as alternative action, complex
solution spaces with tipping points emerge, which obstruct a clear interpretation.

A distinct feature of [BMR09] is the assumption of secondary losses which are
not covered by insurance contracts nor considered in the premium calculation. This
leads to overpriced cyber-insurance products, negatively affecting demand. The pa-
per names reputation losses after security breaches as example for secondary losses
and suggests that this kind of overpricing could explain the underdeveloped market for
cyber-insurance. The authors adopt a simplified and modified version of [Rav79] to
pinpoint the effects of secondary losses and relate this situation to information asym-
metry. The paper demonstrates that even without moral hazard and adverse selection,
information asymmetry of insurers about agents can lead to overpricing. It remains an
open question, however, if contracts can be designed to reduce secondary losses or to
separate risks without secondary losses, which then can be priced to match demand.

In [SSFW09] security risks are interdependent, and homogeneous agents can choose
how much to invest in security (continuous action). With information asymmetry, that
is, when agents’ security choices are unobservable by the insurers, the insurance market
is missing due to moral hazard. Without asymmetric information, that is, when agents’
security investment can be (and is) included into the contract, an equilibrium exists.
However, for a substantial parameter range, the possibility to buy cyber-insurance leads
to lower security investment. This is so because buying insurance and investing into se-
curity are strategic substitutes. When translated to terms of social welfare, [SSFW09]
comes to the result common to all models: insurers may have a positive effect on so-
cial welfare, but a negative effect on network security. Reallocation of risk helps to
reduce security overinvestment and reallocates the freed resources to more productive
activities.

3.2 Related Topics
Although our framework was designed to be as comprehensive as possible, there re-
main a few publications on aspects that are hard to classify. To complete the survey
nonetheless, we will discuss them here.

We are aware of literature on two specific sub-problems specific of cyber-insurance
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underwriting. First, [IOB09] conducted a qualitative empirical study to identify suit-
able rating indicators to assess agents’ security levels at the time of underwriting. Sec-
ond, [HH07] suggest a method to translate the number of affected machines to mone-
tary losses by calibrating copula functions.

In [GYL+07, YLG+08], cyber-insurance is proposed to cover risk related to pri-
vacy breaches. More specifically, [YLG+08] suggests a random utility model (RUM)
to model privacy risks, and an attempt is made to develop insurance instruments using
RUM. Although raised as a question in the paper, it includes no analysis of supply-side
incentives. A setting with outsourced IT is considered in [GYL+07]. Privacy risks are
assumed to be interdependent and informational asymmetric between the agent and the
outsourcing provider. These information asymmetries can cause undesirable actions of
the provider. [GYL+07] utilizes the principal–agent approach to derive the contract
under the assumption of perfectly competitive insurers. The procedure followed by the
principla–agent literature is to assume that the principal chooses the contract, or the
incentive scheme, to maximize his expected utility subject to constraints assuring that
the agent’s expected utility is not lower than some pre-specified level (i.e., his incentive
constraint holds). [Tir99] describes principal–agent models as “dynamic optimization
approach to contracts”. While dynamic optimization implies that strategic considera-
tions are only partially addressed, we definitely see some potential in the application
of principal–agent literature to cyber-insurance contracts.

However, we remain skeptical about the prospects of privacy insurance given that
the known obstacles correlated risk, interdependent security, and information asymme-
tries are even more acute in the case of privacy, not to mention the ‘really hard’ practical
problems, such as loss substantiation and valuation of privacy [KRG+08, BB09].

4 Concluding Remarks
In this paper, we have proposed a unifying framework for models of the cyber-insurance
market. It is unifying in a sense that it unites phenomena that have previously been
studied separately, such as interdependent security and correlated risk, in a common
risk arrival process. Our framework covers all modeling papers of cyber-insurance
markets, and summarizes their results. Despite the early optimism about positive ef-
fects of cyber-insurance on network security, by and large, the existing models find that
insurance markets might fail. And if a market exists, it tends to have adverse effects on
incentives to improve security.

We discussed how the existing literature can be expressed in our unified terminol-
ogy. This allowed us to compare between the different modeling approaches, to gain
insight about which modeling decisions lead to what kind of outcomes. We also iden-
tified relevant combinations of properties that are both specific to cyber-risk and not
investigated so far.

A common theme of most future research directions suggested throughout this pa-
per is to endogenize parameters that are exogenously given in the existing literature,
for instance network topology (Sect. 2.1.2), information structure (Sect. 2.4), and or-
ganizational environment (Sect. 2.5). As this clearly affects the analytical tractability,
finding the right trade-off between model complexity and expressiveness remains an
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important question.
Observe that our framework is limited to analytical models of cyber-insurance.

While this reflects the reality of the art—we are not aware of any quantitative em-
pirical work on cyber-insurance markets14—, one more oddity of the subject becomes
apparent: economic research on conventional insurance followed the existing business
practices, whereas researchers of cyber-insurance develop theory in the hope to find a
practical business solution.

As a final observation, our stock-taking exercise also revealed a substantial dis-
crepancy between informal conjectures and claims in the cyber-insurance literature on
the one hand, and model assumptions and inferences on the other hand. For example,
researchers write about how insurers will . . .

• . . . improve information about security levels. But they do not include parameters
that reflect such information improvements in their models.

• . . . affect agents’ choices of network products (hardware, software, configura-
tion). But existing models of contracts do not reflect these choices.

• . . . aggregate information about security (obtained from claims). But they do not
model it parametrically.

This list can be continued. It strikes us that many of the positive expectations about
cyber-insurance have not been analyzed rigorously, so that our conclusion remain based
on weak evidence even after a decade of research. We can only speculate about the
reasons; perhaps initial results of market failure have scared researchers’ attention off
the field, despite considerable interest of policy makers. On the upside, this means that
cyber-insurance continues to be an attractive area of interdisciplinary research. Our
hope is that this framework contributes to proceed more efficiently.
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List of Symbols
α fraction of potential loss mitigated by self-insurance
β fraction of potential loss covered by (market) insurance
ε risk of insurer bankruptcy
λ markup over actuarially fair premium
ρ premium for unit potential loss l = 1
σ parameter of risk aversion
τ threshold for tail risk in reinsurance scenario
c safety capital
CG indicator function of connectedness between two nodes in G
D defense function, returns loss distribution (or parameters thereof) as a

function of security investment
f fine for contract violation
G network topology (see also CG)
i primary index for nodes or agents
I function for market interest rate at given default risk
j third index for further nodes or agents
j ternary index for other nodes or agents
l potential loss, often normalized to 1
m number of nodes controlled by a specific agent
n number of nodes, number of contracts in insurer’s portfolio
p probability of loss l
q sequence for formalizing tree-shaped graph and structured clusters
R random vector of individual losses, realizations r

si level of security at node i, expressed in monetary terms of the security
investment

s level of security at all nodes
S cost function for self-insurance
u utility, random variable U

U utility function
w (initial) wealth, random variable W

X random vector of individual risk arrival, realizations x

Z random vector of aggregated losses
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